论文标题
具有时间变化参数的非线性ODE模型的可识别性:一般的分析解决方案和病毒动力学中的应用
Identifiability of nonlinear ODE Models with Time-Varying Parameters: the General Analytical Solution and Applications in Viral Dynamics
论文作者
论文摘要
可识别性是以一组未知参数为特征的任何ODE模型的结构属性。它描述了从融合系统输入和输出的观察结果中确定这些参数值的可能性。本文找到了这个基本问题的一般分析解决方案,并基于此提供了一种通用和自动化的分析方法来确定未知参数的可识别性。特别地,该方法可以处理任何模型,无论其复杂性和非线性类型如何,并且即使参数时间变化,也可以提供对参数的可识别性。此外,它是自动的,因为它只需要遵循仅需要执行衍生词和矩阵等级的系统过程的步骤即可。时变参数被视为未知输入,其识别基于未知输入可观察性问题的最新分析解决方案[1,2]。该方法用于确定未知的时间变化参数的可识别性,这些参数表征了病毒动力学(HIV和COVID-19)和一个非线性模型,该参数表征了两个非线性模型,该模型表征了遗传开关。通过与最先进的结果进行比较,可以详细确定和讨论这些模型的新基本属性。特别是,关于非常流行的HIV ODE模型和遗传拨动开关模型,该方法会自动找到与当前文献中结果相反的新重要结果。
Identifiability is a structural property of any ODE model characterized by a set of unknown parameters. It describes the possibility of determining the values of these parameters from fusing the observations of the system inputs and outputs. This paper finds the general analytical solution of this fundamental problem and, based on this, provides a general and automated analytical method to determine the identifiability of the unknown parameters. In particular, the method can handle any model, regardless of its complexity and type of non-linearity, and provides the identifiability of the parameters even when they are time-varying. In addition, it is automatic as it simply needs to follow the steps of a systematic procedure that only requires to perform the calculation of derivatives and matrix ranks. Time-varying parameters are treated as unknown inputs and their identification is based on the very recent analytical solution of the unknown input observability problem [1, 2]. The method is used to determine the identifiability of the unknown time-varying parameters that characterize two non-linear models in the field of viral dynamics (HIV and Covid-19) and a non-linear model that characterizes the genetic toggle switch. New fundamental properties that characterize these models are determined and discussed in detail through a comparison with the state-of-the-art results. In particular, regarding the very popular HIV ODE model and the genetic toggle switch model, the method automatically finds new important results that are in contrast with the results in the current literature.