论文标题
独一图和距离平方矩阵的惯性
Unicyclic graphs and the inertia of the distance squared matrix
论文作者
论文摘要
Bapat和Sivasubramanian的结果给出了树的距离平方基质的惯性。我们开发了有关吊坠顶点和程度2顶点如何影响距离平方矩阵的惯性的一般工具,并使用它们来提供此结果的替代证明。我们进一步使用这些工具将此结果扩展到某些单车图家族,并探索这些结果可以扩展多远。
A result of Bapat and Sivasubramanian gives the inertia of the distance squared matrix of a tree. We develop general tools on how pendant vertices and degree 2 vertices affect the inertia of the distance squared matrix and use these to give an alternative proof of this result. We further use these tools to extend this result to certain families of unicyclic graphs, and we explore how far these results can be extended.