论文标题

用于高维不完整数据的神经网络高斯过程的多重插补

Multiple Imputation with Neural Network Gaussian Process for High-dimensional Incomplete Data

论文作者

Dai, Zongyu, Bu, Zhiqi, Long, Qi

论文摘要

丢失的数据在现实世界应用中无处不在,如果没有充分处理,则可能导致信息丢失和下游分析中的有偏见。特别是,具有中等样本量的高维不完整数据,例如对多摩管数据的分析,提出了艰巨的挑战。插补可以说是处理丢失数据的最流行方法,尽管现有的插补方法具有许多局限性。诸如矩阵完成方法之类的单一插补方法不能充分说明插补不确定性,因此会产生不当的统计推断。相比之下,多个插补(MI)方法允许适当推断,但现有方法在高维设置中的表现不佳。我们的工作旨在解决这些重大的方法论差距,从贝叶斯观点利用神经网络高斯过程(NNGP)的最新进展。我们提出了两种基于NNGP的MI方法,即Mi-NNGP,它们可以从关节(后验预测)分布中应用多个缺失值的归档。在插补误差,统计推断,缺失率的稳健性和计算成本方面,MICAR,MCAR,MAR,MAR和MNAR,MI-NNGP方法显示出对合成和真实数据集的现有最新方法显着优于现有的最新方法。

Missing data are ubiquitous in real world applications and, if not adequately handled, may lead to the loss of information and biased findings in downstream analysis. Particularly, high-dimensional incomplete data with a moderate sample size, such as analysis of multi-omics data, present daunting challenges. Imputation is arguably the most popular method for handling missing data, though existing imputation methods have a number of limitations. Single imputation methods such as matrix completion methods do not adequately account for imputation uncertainty and hence would yield improper statistical inference. In contrast, multiple imputation (MI) methods allow for proper inference but existing methods do not perform well in high-dimensional settings. Our work aims to address these significant methodological gaps, leveraging recent advances in neural network Gaussian process (NNGP) from a Bayesian viewpoint. We propose two NNGP-based MI methods, namely MI-NNGP, that can apply multiple imputations for missing values from a joint (posterior predictive) distribution. The MI-NNGP methods are shown to significantly outperform existing state-of-the-art methods on synthetic and real datasets, in terms of imputation error, statistical inference, robustness to missing rates, and computation costs, under three missing data mechanisms, MCAR, MAR, and MNAR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源