论文标题

在$κ$ -PSEUDOCOCTACTESS和功能空间的均匀同态性上

On $κ$-pseudocompactess and uniform homeomorphisms of function spaces

论文作者

Krupski, Mikołaj

论文摘要

如果每个连续的映射$ f $ $ x $ $ x $ in $ \ mathbb {r}^κ$ the Image $ f(x)$是紧凑的,则tychonoff space $ x $称为$κ$ -PSEUDOCOMPACT。该概念概括了假发性,并给出了位于假发和紧凑空间之间的空间的分层。众所周知,$ x $的伪混合度是由功能空间的均匀结构$ c_p(x)$连续实现函数的$ x $上的$ x $所赋予的点置。关于A.V. Arhangel'skii在[Topology Appl。,89(1998)]中问,如果$κ$ -PseudoCompactnesments类似主张是正确的。我们为这个问题提供了肯定的答案。

A Tychonoff space $X$ is called $κ$-pseudocompact if for every continuous mapping $f$ of $X$ into $\mathbb{R}^κ$ the image $f(X)$ is compact. This notion generalizes pseudocompactness and gives a stratification of spaces lying between pseudocompact and compact spaces. It is well known that pseudocompactness of $X$ is determined by the uniform structure of the function space $C_p(X)$ of continuous real-valued functions on $X$ endowed with the pointwise topology. In respect of that A.V. Arhangel'skii asked in [Topology Appl., 89 (1998)] if analogous assertion is true for $κ$-pseudocompactness. We provide an affirmative answer to this question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源