论文标题

禁止子图I:框架的复杂性框架

Complexity Framework For Forbidden Subgraphs I: The Framework

论文作者

Johnson, Matthew, Martin, Barnaby, Oostveen, Jelle J., Pandey, Sukanya, Paulusma, Daniël, Smith, Siani, van Leeuwen, Erik Jan

论文摘要

对于任何特定类别的图形,限制在类的计算问题的算法通常依赖于依赖于当前特定问题的结构属性。这就提出了一个问题,是否可以通过一些常见的问题条件来解释大量此类结果。我们提出了$ hh $ -subgraph-for图的此类条件。对于一组图$ hh $,如果$ g $不包含$ h $作为子图的任何图形,则图$ g $是$ hh $ -subgraph的。我们的条件很容易说明。必须有效地在界面宽度的图表上有效解决图形问题,在亚基图上的计算硬度硬化,并且必须在亚地带图的边缘细分下保留计算硬度。我们的元分类说,如果图形问题满足了所有三个条件,那么对于每一个有限的套装$ hh $,在$ hh $ -subgraph-fraph-fraph-fraph-fraph-fraph-fraph-fraph-fraph图中,如果$ hh $都包含一个或多个路径的脱节结合,并且是一个或多个路径的结合,并且是一个分区的爪子,并且是``计算'''''is computation``'''''''''我们通过在多项式时间溶解度和NP完整性之间进行二分法来说明我们的元分类的广泛适用性,以解决许多知名的分区,覆盖和包装问题,网络设计问题和宽度参数问题。对于其他问题,我们在几乎是线性的时间溶解度和没有亚次级时间算法之间获得二分法(以某些硬度假设为条件)。因此,所提出的框架提供了一个简单的途径,以确定$ hh $ -subgraph-freagraph图的图形问题的复杂性。在此过程中,我们发现并解决了文献中的几个公开问题,这一事实得到了更多的证实。

For any particular class of graphs, algorithms for computational problems restricted to the class often rely on structural properties that depend on the specific problem at hand. This begs the question if a large set of such results can be explained by some common problem conditions. We propose such conditions for $HH$-subgraph-free graphs. For a set of graphs $HH$, a graph $G$ is $HH$-subgraph-free if $G$ does not contain any of graph from $H$ as a subgraph. Our conditions are easy to state. A graph problem must be efficiently solvable on graphs of bounded treewidth, computationally hard on subcubic graphs, and computational hardness must be preserved under edge subdivision of subcubic graphs. Our meta-classification says that if a graph problem satisfies all three conditions, then for every finite set $HH$, it is ``efficiently solvable'' on $HH$-subgraph-free graphs if $HH$ contains a disjoint union of one or more paths and subdivided claws, and is ``computationally hard'' otherwise. We illustrate the broad applicability of our meta-classification by obtaining a dichotomy between polynomial-time solvability and NP-completeness for many well-known partitioning, covering and packing problems, network design problems and width parameter problems. For other problems, we obtain a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). The proposed framework thus gives a simple pathway to determine the complexity of graph problems on $HH$-subgraph-free graphs. This is confirmed even more by the fact that along the way, we uncover and resolve several open questions from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源