论文标题

一般多边形砖及其匹配的复合物

General polygonal line tilings and their matching complexes

论文作者

Bayer, Margaret, Milutinović, Marija Jelić, Vega, Julianne

论文摘要

(一般的)多边形线瓷砖是由一串循环形成的图,每个图都与前面相交,没有三个相交。在2022年,Matsushita证明了某种类型的多边形线瓷砖与均匀周期的匹配复合物相当于球形的楔形物。在本文中,我们扩展了Matsushita的工作,以包括一个较大的图形家庭,并对斐波那契数字出现的三角形和五角大州的线条进行了更仔细的分析。

A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent to a wedge of spheres. In this paper, we extend Matsushita's work to include a larger family of graphs and carry out a closer analysis of lines of triangle and pentagons, where the Fibonacci numbers arise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源