论文标题

增量张量火车分解算法

An Incremental Tensor Train Decomposition Algorithm

论文作者

Aksoy, Doruk, Gorsich, David J., Veerapaneni, Shravan, Gorodetsky, Alex A.

论文摘要

我们提出了一种新算法,用于逐步更新张量数据流的张量火车分解。这种新算法称为{\ em张量列车增量核心扩展}(TT-ICE),改善了当前的最新算法,用于通过开发一种新的适应性方法来压缩张量的火车格式,从而构成一种新的适应性方法,从而构成明显缓慢的级别级别增长并确保压缩准确性。通过限制在每个数据增加后,将附加到现有累积张量的TT核的新向量的数量来实现此功能。这些向量代表了与现有内核跨度键合的方向,并且仅限于代表新到达的张量所需的方向。我们提供了两个版本的算法:TT-ICE和TT-ICE加速使用启发式方法(TT-ICE $^*$)。我们为TT-ICE提供了正确性的证明,并从经验上证明了算法在压缩大规模视频和科学模拟数据集中的性能。与也使用等级改编的现有方法相比,TT-ICE $^*$达到$ 57 \ times $更高的压缩和最高$ 95 \%$ $减少计算时间。

We present a new algorithm for incrementally updating the tensor train decomposition of a stream of tensor data. This new algorithm, called the {\em tensor train incremental core expansion} (TT-ICE) improves upon the current state-of-the-art algorithms for compressing in tensor train format by developing a new adaptive approach that incurs significantly slower rank growth and guarantees compression accuracy. This capability is achieved by limiting the number of new vectors appended to the TT-cores of an existing accumulation tensor after each data increment. These vectors represent directions orthogonal to the span of existing cores and are limited to those needed to represent a newly arrived tensor to a target accuracy. We provide two versions of the algorithm: TT-ICE and TT-ICE accelerated with heuristics (TT-ICE$^*$). We provide a proof of correctness for TT-ICE and empirically demonstrate the performance of the algorithms in compressing large-scale video and scientific simulation datasets. Compared to existing approaches that also use rank adaptation, TT-ICE$^*$ achieves $57\times$ higher compression and up to $95\%$ reduction in computational time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源