论文标题

精炼:使用强大反馈线性化和扎根的基于可及性的轨迹设计

REFINE: Reachability-based Trajectory Design using Robust Feedback Linearization and Zonotopes

论文作者

Liu, Jinsun, Shao, Yifei, Lymburner, Lucas, Qin, Hansen, Kaushik, Vishrut, Trang, Lena, Wang, Ruiyang, Ivanovic, Vladimir, Tseng, H. Eric, Vasudevan, Ram

论文摘要

在提供安全保证的同时,为自动驾驶汽车进行实时退缩运动计划仍然很困难。这是因为现有的方法可以准确预测所选控制器使用在线数值集成下的自我车辆行为,这需要良好的时间离散化,从而对实时性能产生不利影响。为了解决这一局限性,最近提出的几篇论文提出了应用离线达到性分析,以保守地预测自我车辆的行为。可以通过利用简化的模型来构建此可达集,该模型被认为是保守地限制全阶模型动力学的先验行为。但是,确保满足这一假设是具有挑战性的。本文提出了一个名为“精炼”框架,以克服这些现有方法的局限性。 Refine使用了一个参数化的鲁棒控制器,该控制器即使在存在建模误差的情况下也会部分线性地线性地线性化。然后,在闭环,全阶车辆动力学上进行基于扎根的可及性分析,以计算相应的控制参数化,过度陈列的正向触及套件(FRS)。由于可及性分析应用于全阶模型,因此可以避免使用简化模型引入的潜在保守性。然后在优化框架中在线使用预先计算的控制参数的FRS,以确保安全性。在全尺寸车辆模型的基于仿真的评估中,将提出的方法与几种最先进的方法进行了比较,并在实际硬件测试中的1/10赛车机器人上进行了评估。与现有方法相反,精炼剂被证明可以使车辆能够在复杂的环境中安全地驾驭自身。

Performing real-time receding horizon motion planning for autonomous vehicles while providing safety guarantees remains difficult. This is because existing methods to accurately predict ego vehicle behavior under a chosen controller use online numerical integration that requires a fine time discretization and thereby adversely affects real-time performance. To address this limitation, several recent papers have proposed to apply offline reachability analysis to conservatively predict the behavior of the ego vehicle. This reachable set can be constructed by utilizing a simplified model whose behavior is assumed a priori to conservatively bound the dynamics of a full-order model. However, guaranteeing that one satisfies this assumption is challenging. This paper proposes a framework named REFINE to overcome the limitations of these existing approaches. REFINE utilizes a parameterized robust controller that partially linearizes the vehicle dynamics even in the presence of modeling error. Zonotope-based reachability analysis is then performed on the closed-loop, full-order vehicle dynamics to compute the corresponding control-parameterized, over-approximate Forward Reachable Sets (FRS). Because reachability analysis is applied to the full-order model, the potential conservativeness introduced by using a simplified model is avoided. The pre-computed, control-parameterized FRS is then used online in an optimization framework to ensure safety. The proposed method is compared to several state of the art methods during a simulation-based evaluation on a full-size vehicle model and is evaluated on a 1/10th race car robot in real hardware testing. In contrast to existing methods, REFINE is shown to enable the vehicle to safely navigate itself through complex environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源