论文标题

基于多路比较的最佳选择的排名推论

Ranking Inferences Based on the Top Choice of Multiway Comparisons

论文作者

Fan, Jianqing, Lou, Zhipeng, Wang, Weichen, Yu, Mengxin

论文摘要

本文根据每次试验中随机选择的$ m $选择的观察到的数据,认为$ n $项目的排名推论。这是对Plackett-luce模型的有用修改,仅观察到的最佳选择,是著名的Bradley-terry-luce模型的扩展,该模型对应于$ m = 2 $。在一个均匀的抽样方案下,其中选择了与概率$ p $的比较和所选的$ m $项目的任何$ m $区分的项目,并将所选的$ m $项目与多项式结果进行了比较,我们建立了使用$ n $ prexprection得分的统计速率,使用$ \ ell_2 $ - norm and $ \ ell_ \ ell_ \ eld_ \ iffty $ -norm和minnorm sammimie sammiem,此外,我们建立了最大似然估计器的渐近正态性,该估计量使我们能够为基础分数构建置信区间。此外,我们提出了一个新颖的推理框架,用于通过复杂的最大成对差异统计量对项目进行排名,该统计量是通过有效的高斯乘数bootstrap估算的。然后,估计的分布用于构建同时置信区间,以构建偏好得分和单个项目等级的差异。它们还使我们能够解决有关这些项目等级的各种推论问题。广泛的仿真研究为我们的理论结果提供了进一步的支持。真实的数据应用程序令人信服地说明了提出的方法的有用性。

This paper considers ranking inference of $n$ items based on the observed data on the top choice among $M$ randomly selected items at each trial. This is a useful modification of the Plackett-Luce model for $M$-way ranking with only the top choice observed and is an extension of the celebrated Bradley-Terry-Luce model that corresponds to $M=2$. Under a uniform sampling scheme in which any $M$ distinguished items are selected for comparisons with probability $p$ and the selected $M$ items are compared $L$ times with multinomial outcomes, we establish the statistical rates of convergence for underlying $n$ preference scores using both $\ell_2$-norm and $\ell_\infty$-norm, with the minimum sampling complexity. In addition, we establish the asymptotic normality of the maximum likelihood estimator that allows us to construct confidence intervals for the underlying scores. Furthermore, we propose a novel inference framework for ranking items through a sophisticated maximum pairwise difference statistic whose distribution is estimated via a valid Gaussian multiplier bootstrap. The estimated distribution is then used to construct simultaneous confidence intervals for the differences in the preference scores and the ranks of individual items. They also enable us to address various inference questions on the ranks of these items. Extensive simulation studies lend further support to our theoretical results. A real data application illustrates the usefulness of the proposed methods convincingly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源