论文标题
矩阵元素方法的深度学习
Deep Learning for the Matrix Element Method
论文作者
论文摘要
从高能撞机数据中提取科学结果涉及比较从实验中收集的数据与计算密集型模拟产生的合成数据的比较。实验数据和模拟预测的比较越来越多地利用机器学习(ML)方法来克服这些计算挑战并增强数据分析。人们对应用于数据解释这些模型的ML模型的可解释性的挑战的认识越来越大,并验证了基于它们的科学结论。矩阵元素(ME)方法是一种强大的技术,用于分析粒子对撞机数据,该数据利用\ textIt {ab intio}计算碰撞事件的近似概率密度函数是由于感兴趣的物理过程所致。 ME方法具有几个独特且可取的功能,包括(1)不需要培训数据,因为它是事件概率的\ textIt {ab intio}计算事件概率的计算,(2)结合了假设过程的所有可用的运动学信息,包括相关性,包括特征工程的不需要功能工程,并且(3)在过渡性范围内的明确的物理解释范围内的构架范围内的构架范围内构成了量子的范围。这些程序简要描述了深度学习的应用,该应用程序急剧加快了我的方法计算和新的网络基础结构,以执行基于我的异质计算平台的分析。
Extracting scientific results from high-energy collider data involves the comparison of data collected from the experiments with synthetic data produced from computationally-intensive simulations. Comparisons of experimental data and predictions from simulations increasingly utilize machine learning (ML) methods to try to overcome these computational challenges and enhance the data analysis. There is increasing awareness about challenges surrounding interpretability of ML models applied to data to explain these models and validate scientific conclusions based upon them. The matrix element (ME) method is a powerful technique for analysis of particle collider data that utilizes an \textit{ab initio} calculation of the approximate probability density function for a collision event to be due to a physics process of interest. The ME method has several unique and desirable features, including (1) not requiring training data since it is an \textit{ab initio} calculation of event probabilities, (2) incorporating all available kinematic information of a hypothesized process, including correlations, without the need for feature engineering and (3) a clear physical interpretation in terms of transition probabilities within the framework of quantum field theory. These proceedings briefly describe an application of deep learning that dramatically speeds-up ME method calculations and novel cyberinfrastructure developed to execute ME-based analyses on heterogeneous computing platforms.