论文标题

活动粒子系统的现场理论及其熵产生

Field theories of active particle systems and their entropy production

论文作者

Pruessner, Gunnar, Garcia-Millan, Rosalba

论文摘要

将化学能转化为自我推测的活性颗粒可以维持远程平衡的稳态并进行工作。熵的生产测量了距离这种粒子系统运行的平衡多远,并作为所执行工作的代理。现场理论提供了一种有希望的计算熵产生的途径,因为它允许同时考虑许多相互作用的粒子。通过在添加噪声上抽出的粗粒或平滑获得的近似场理论可以很好地捕获密度和相关性,但它们通常忽略了成分的微观粒子性质,从而为熵产生产生了虚假的结果。作为替代方案,我们演示了如何使用doi-peliti场理论,这些理论捕获了微观动力学,包括反应和与外部和配对电位的相互作用。这种字段理论原则上是精确的,同时以图表的形式提供了系统的近似方案。我们演示了如何从fokker-planck方程中构造它们,并展示如何从第一原理中计算活动物质的熵产生。该框架很容易扩展到包括交互。我们使用它来为熵产生的精确,紧凑和有效的一般表达式提供了各种相互作用的保守粒子系统。这些表达式独立于基​​础场理论,可以解释为局部熵产生的空间平均值。它们很容易适用于数值和实验数据。通常,由于任何一对相互作用而引起的熵产生最多在三个点,相等的时间密度。以及$ N $ - 点的交互,$(2N-1)$ - 点密度。我们在许多精确的,可处理的示例中说明了该技术,包括一些具有成对交互的示例以及许多相互作用ABP的系统。

Active particles that translate chemical energy into self-propulsion can maintain a far-from-equilibrium steady state and perform work. The entropy production measures how far from equilibrium such a particle system operates and serves as a proxy for the work performed. Field theory offers a promising route to calculating entropy production, as it allows for many interacting particles to be considered simultaneously. Approximate field theories obtained by coarse-graining or smoothing that draw on additive noise can capture densities and correlations well, but they generally ignore the microscopic particle nature of the constituents, thereby producing spurious results for the entropy production. As an alternative we demonstrate how to use Doi-Peliti field theories, which capture the microscopic dynamics, including reactions and interactions with external and pair potentials. Such field theories are in principle exact, while offering a systematic approximation scheme, in the form of diagrammatics. We demonstrate how to construct them from a Fokker-Planck equation and show how to calculate entropy production of active matter from first principles. This framework is easily extended to include interaction. We use it to derive exact, compact and efficient general expressions for the entropy production for a vast range of interacting conserved particle systems. These expressions are independent of the underlying field theory and can be interpreted as the spatial average of the local entropy production. They are readily applicable to numerical and experimental data. In general, the entropy production due to any pair interaction draws at most on the three point, equal time density; and an $n$-point interaction on the $(2n-1)$-point density. We illustrate the technique in a number of exact, tractable examples, including some with pair-interaction as well as in a system of many interacting ABPs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源