论文标题
非共同交叉的理论和单一脱节式米尔诺公式
Non-commutative intersection theory and unipotent Deligne-Milnor formula
论文作者
论文摘要
我们采用派生和非交通性代数几何形状的方法来理解算术方案中的相交理论现象。具体而言,我们对Bloch的相交编号进行了分类(以Kato-Saito提供的配方)。将其与Toën-vezzosi的非共同Chern特征相结合,我们在几种新案例中获得了Bloch导体猜想的概括,包括Unipotent Deligne-Milnor公式。
We apply methods of derived and non-commutative algebraic geometry to understand intersection theoretic phenomena on arithmetic schemes. Specifically, we categorify Bloch's intersection number (in the formulation provided by Kato--Saito). Combining this with Toën--Vezzosi's non-commutative Chern character, we obtain a generalization of Bloch conductor conjecture in several new cases, including the unipotent Deligne--Milnor formula.