论文标题

从RGB图像中学习隐式概率分布函数,用于对称取向估算

Learning Implicit Probability Distribution Functions for Symmetric Orientation Estimation from RGB Images Without Pose Labels

论文作者

Periyasamy, Arul Selvam, Denninger, Luis, Behnke, Sven

论文摘要

对象姿势估计是自动机器人操作的必要先决条件,但是对称性的存在增加了姿势估计任务的复杂性。对象姿势估计的现有方法输出一个6D姿势。因此,他们缺乏推理对称性的能力。最近,将对象取向建模为神经网络SO(3)歧管上的非参数概率分布,已显示出令人印象深刻的结果。但是,获取大规模数据集来训练姿势估计模型仍然是一种瓶颈。为了解决此限制,我们引入了自动姿势标签方案。给定无物体姿势注释和3D对象模型的RGB-D图像,我们设计了一个两阶段管道,该管道由点云注册和渲染和功能验证组成,以生成每个图像的多个对称对称的伪基真实姿势标签。使用生成的姿势标签,我们训练一个隐式PDF模型,以估计给定RGB图像的方向假设的可能性。 SO(3)歧管的有效层次采样可在多个分辨率下可拖延的对称性集。在推断期间,使用梯度上升来估计目标对象的最可能取向。我们评估了逼真的数据集和无线数据集上提出的自动姿势标记方案和隐pdf模型,证明了所提出的方法的优势。

Object pose estimation is a necessary prerequisite for autonomous robotic manipulation, but the presence of symmetry increases the complexity of the pose estimation task. Existing methods for object pose estimation output a single 6D pose. Thus, they lack the ability to reason about symmetries. Lately, modeling object orientation as a non-parametric probability distribution on the SO(3) manifold by neural networks has shown impressive results. However, acquiring large-scale datasets to train pose estimation models remains a bottleneck. To address this limitation, we introduce an automatic pose labeling scheme. Given RGB-D images without object pose annotations and 3D object models, we design a two-stage pipeline consisting of point cloud registration and render-and-compare validation to generate multiple symmetrical pseudo-ground-truth pose labels for each image. Using the generated pose labels, we train an ImplicitPDF model to estimate the likelihood of an orientation hypothesis given an RGB image. An efficient hierarchical sampling of the SO(3) manifold enables tractable generation of the complete set of symmetries at multiple resolutions. During inference, the most likely orientation of the target object is estimated using gradient ascent. We evaluate the proposed automatic pose labeling scheme and the ImplicitPDF model on a photorealistic dataset and the T-Less dataset, demonstrating the advantages of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源