论文标题

部分可观测时空混沌系统的无模型预测

L-MAE: Masked Autoencoders are Semantic Segmentation Datasets Augmenter

论文作者

Jia, Jiaru, Liu, Mingzhe, Xie, Jiake, Chen, Xin, Zhang, Hong, Zhao, Feixiang, Yang, Aiqing

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Generating semantic segmentation datasets has consistently been laborious and time-consuming, particularly in the context of large models or specialized domains(i.e. Medical Imaging or Remote Sensing). Specifically, large models necessitate a substantial volume of data, while datasets in professional domains frequently require the involvement of domain experts. Both scenarios are susceptible to inaccurate data labeling, which can significantly affect the ultimate performance of the trained model. This paper proposes a simple and effective label pixel-level completion method, \textbf{Label Mask AutoEncoder} (L-MAE), which fully uses the existing information in the label to generate the complete label. The proposed model are the first to apply the Mask Auto-Encoder to downstream tasks. In detail, L-MAE adopts the fusion strategy that stacks the label and the corresponding image, namely fuse map. Moreover, since some of the image information is lost when masking the fuse map, direct reconstruction may lead to poor performance. We proposed Image Patch Supplement algorithm to supplement the missing information during the mask-reconstruct process, and empirically found that an average of 4.1\% mIoU can be improved. We conducted a experiment to evaluate the efficacy of L-MAE to complete the dataset. We employed a degraded Pascal VOC dataset and the degraded dataset enhanced by L-MAE to train an identical conventional semantic segmentation model for the initial set of experiments. The results of these experiments demonstrate a performance enhancement of 13.5\% in the model trained with the L-MAE-enhanced dataset compared to the unenhanced dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源