论文标题

neumap:自动transdecoder进行摄像机定位的神经坐标映射

NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera Localization

论文作者

Tang, Shitao, Tang, Sicong, Tagliasacchi, Andrea, Tan, Ping, Furukawa, Yasutaka

论文摘要

本文提出了一种端到端的神经映射方法,用于摄像机定位,称为neumap,将整个场景编码为潜在代码的网格,基于变压器的自动码数将其回归查询像素的3D坐标。最先进的功能匹配方法要求每个场景都作为具有每点功能的3D点云存储,每个场景都消耗了几GB的存储空间。虽然可以进行压缩,但在高压率下的性能显着下降。相反,坐标回归方法通过将场景信息存储在神经网络中,但稳健性降低来实现高压。 Neumap通过利用1)可学习的潜在代码来结合两种方法的优势,以进行有效的场景表示以及2)基于场景 - 敏捷变压器的自动码编码器来推断查询像素的坐标。这种场景不可思议的网络设计从大规模数据中学习了强大的匹配先验,并可以快速优化新场景的代码,同时保持网络权重固定。对五个基准测试的广泛评估表明,Neumap明显优于其他坐标回归方法,并实现与特征匹配方法相当的性能,同时需要较小的场景表示大小。例如,Neumap在Aachen Night基准中仅具有6MB的数据,在Aachen Night基准中达到了39.1%的精度,而替代方法需要100MB或几个Gigabytes,并且在高压设置下完全失败。这些代码可在https://github.com/tangshitao/neumap上找到

This paper presents an end-to-end neural mapping method for camera localization, dubbed NeuMap, encoding a whole scene into a grid of latent codes, with which a Transformer-based auto-decoder regresses 3D coordinates of query pixels. State-of-the-art feature matching methods require each scene to be stored as a 3D point cloud with per-point features, consuming several gigabytes of storage per scene. While compression is possible, performance drops significantly at high compression rates. Conversely, coordinate regression methods achieve high compression by storing scene information in a neural network but suffer from reduced robustness. NeuMap combines the advantages of both approaches by utilizing 1) learnable latent codes for efficient scene representation and 2) a scene-agnostic Transformer-based auto-decoder to infer coordinates for query pixels. This scene-agnostic network design learns robust matching priors from large-scale data and enables rapid optimization of codes for new scenes while keeping the network weights fixed. Extensive evaluations on five benchmarks show that NeuMap significantly outperforms other coordinate regression methods and achieves comparable performance to feature matching methods while requiring a much smaller scene representation size. For example, NeuMap achieves 39.1% accuracy in the Aachen night benchmark with only 6MB of data, whereas alternative methods require 100MB or several gigabytes and fail completely under high compression settings. The codes are available at https://github.com/Tangshitao/NeuMap

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源