论文标题

与多输出深内核的反事实学习

Counterfactual Learning with Multioutput Deep Kernels

论文作者

Caron, Alberto, Baio, Gianluca, Manolopoulou, Ioanna

论文摘要

在本文中,我们解决了通过贝叶斯非参数回归调整与观察数据进行反事实推断的挑战,重点是具有多个动作和多个相关结果的高维度。我们提出了一类反事实多任务深内核模型,该模型估计因果关系效应并凭借其样品效率提高而熟练地学习政策,同时逐步扩大高度。在工作的第一部分中,我们依靠结构性因果模型(SCM)正式引入设置以及识别观察到的混杂量下的反事实数量的问题。然后,我们讨论通过堆叠核心区域化的高斯过程和深内核来应对因果效应估计任务的好处。最后,我们证明了提出的方法在模拟实验中的使用,这些方法涵盖了各个因果效应估计,非政策评估和优化。

In this paper, we address the challenge of performing counterfactual inference with observational data via Bayesian nonparametric regression adjustment, with a focus on high-dimensional settings featuring multiple actions and multiple correlated outcomes. We present a general class of counterfactual multi-task deep kernels models that estimate causal effects and learn policies proficiently thanks to their sample efficiency gains, while scaling well with high dimensions. In the first part of the work, we rely on Structural Causal Models (SCM) to formally introduce the setup and the problem of identifying counterfactual quantities under observed confounding. We then discuss the benefits of tackling the task of causal effects estimation via stacked coregionalized Gaussian Processes and Deep Kernels. Finally, we demonstrate the use of the proposed methods on simulated experiments that span individual causal effects estimation, off-policy evaluation and optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源