论文标题

低马赫数处可压缩的Navier-Stokes-tourier-P1近似模型的非平衡扩散极限:一般初始数据案例

Non-equilibrium diffusion limit of the compressible Navier-Stokes-Fourier-P1 approximation model at low Mach number: general initial data case

论文作者

Li, Fucai, Zhang, Shuxing

论文摘要

在本文中,我们研究了低马赫数的可压缩Navier-Stokes-stokes-stokes-stokes-fourier-p1(NSF-P1)近似模型的非平衡扩散极限,这在辐射流体动力学中产生,一般初始数据和一个参数$Δ\ in [0,2] in描述了扫描效应的强度。在以前的文献中,仅考虑了NSF-P1模型的$δ= 2 $,并且已经准备好已准备好的初始数据案例。在这里,我们证明,对于部分一般初始数据,$δ= 2 $,此模型将其收敛到低马赫数的热传递粘性流以及扩散方程为参数$ε\ rightarrow 0 $。与经典的NSF系统相比,NSF-P1模型具有由辐射压力引起的其他新的单数结构。为了处理这些结构,我们构建了等效的压力和等效速度,以平衡奇异性的顺序,并通过指定适当的加权规范并进行精致的能量分析来建立解决方案的均匀估计。然后,我们从等效压力和等效速度的局部能量衰减中获得压力和速度的收敛性。随着散射强度的变化,即$δ\ in(0,2)$,我们还简要讨论了极限方程的变化。我们发现,随着散射强度的较弱,辐射强度的``扩散特性''逐渐削弱。此外,当散射效应足够弱($δ= 0 $)时,我们可以获得NSF-P1模型的奇异限制,具有一般的初始数据。对于我们的最佳知识而言,这是对散射密度的最佳限制,而不是散射范围的差异。

In this paper, we investigate the non-equilibrium diffusion limit of the compressible Navier-Stokes-Fourier-P1 (NSF-P1) approximation model at low Mach number, which arises in radiation hydrodynamics, with general initial data and a parameter $δ\in [0,2]$ describing the intensity of scatting effect. In previous literature, only $δ=2$ and well-prepared initial data case to the NSF-P1 model was considered. Here we prove that, for partial general initial data and $δ=2$, this model converges to the system of low Mach number heat-conducting viscous flows coupled with a diffusion equation as the parameter $ε\rightarrow 0$. Compared to the classical NSF system, the NSF-P1 model has additional new singular structures caused by the radiation pressure. To handle these structures, we construct an equivalent pressure and an equivalent velocity to balance the order of singularity and establish the uniform estimates of solutions by designating appropriate weighted norms and carrying out delicate energy analysis. We then obtain the convergence of the pressure and velocity from the local energy decay of the equivalent pressure and equivalent velocity. We also briefly discuss the variations of the limit equations as the scattering intensity changes, i.e., $δ\in (0,2)$. We find that, with the weakening of scattering intensity, the ``diffusion property" of radiation intensity gradually weakens. Furthermore, when the scattering effect is sufficiently weak ($δ=0$), we can obtain the singular limits of the NSF-P1 model with general initial data. To our best knowledge, this is the first result on the influence of scattering intensity in the non-equilibrium diffusion limit of the NSF-P1 model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源