论文标题
有条件证明了落球系统的崇高猜想
Conditional Proof of the Ergodic Conjecture for Falling Ball Systems
论文作者
论文摘要
在本文中,我们提出了Wojtkowski的有条件证明,这是在恒定的重力加速度下,一半弹性球落在半线上的1D完全弹性球系统的有条件证明。也就是说,我们证明,几乎每个这样的系统都是(完全双曲线和),通过假设不同的奇点之间的横向性以及奇异性和稳定(不稳定的)不变流形之间的横向性。
In this paper we present a conditional proof of Wojtkowski's Ergodicity Conjecture for the system of 1D perfectly elastic balls falling down in a half line under constant gravitational acceleration. Namely, we prove that almost every such system is (completely hyperbolic and) ergodic, by assuming the transversality between different singularities and between singularities and stable (unstable) invariant manifolds.