论文标题
全球21厘米实验中前景地图错误的一般贝叶斯框架
A General Bayesian Framework to Account for Foreground Map Errors in Global 21-cm Experiments
论文作者
论文摘要
宇宙黎明(CD)和电离时期(EOR)的全局21-CM信号的测量很难通过明亮的前景发射比预期信号大2-5个数量级。在贝叶斯框架内的物理动机参数向前模型的拟合提供了一种强大的手段,可以提供有关仪器和天空的足够信息,从而将信号与前景分开。以前已经证明,在这样的建模框架内,可以通过将天空分为$ n $区域来产生足够的忠诚度的前景模型,并假设每个区域中都有独特的均匀光谱索引。使用无线电实验分析宇宙氢(覆盖范围)作为我们的基准仪器,我们表明,如果未划分,用于基本图模型的低频无线电图中的幅度误差将阻止在此框架内恢复21 cm信号,并且在恢复的21 cm信号中的偏置水平是恢复的区域中的差异和相关的距离和相关的差异。我们介绍了一个更新的前景模型,该模型能够通过拟合单极偏移以及一组空间依赖的量表因子来考虑这些测量误差,该模型描述了真实天空温度和模型的天空温度比例,并由贝叶斯证据基于证动的模型比较确定了集合的大小。我们表明,我们的模型足够灵活,可以说明多个前景误差方案,从而允许检测到21厘米天空平均信号,而不会因具有光滑的圆锥形对数螺旋天线的模拟观测值而没有偏置。
Measurement of the global 21-cm signal during Cosmic Dawn (CD) and the Epoch of Reionization (EoR) is made difficult by bright foreground emission which is 2-5 orders of magnitude larger than the expected signal. Fitting for a physics-motivated parametric forward model of the data within a Bayesian framework provides a robust means to separate the signal from the foregrounds, given sufficient information about the instrument and sky. It has previously been demonstrated that, within such a modelling framework, a foreground model of sufficient fidelity can be generated by dividing the sky into $N$ regions and scaling a base map assuming a distinct uniform spectral index in each region. Using the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) as our fiducial instrument, we show that, if unaccounted-for, amplitude errors in low-frequency radio maps used for our base map model will prevent recovery of the 21-cm signal within this framework, and that the level of bias in the recovered 21-cm signal is proportional to the amplitude and the correlation length of the base-map errors in the region. We introduce an updated foreground model that is capable of accounting for these measurement errors by fitting for a monopole offset and a set of spatially-dependent scale factors describing the ratio of the true and model sky temperatures, with the size of the set determined by Bayesian evidence-based model comparison. We show that our model is flexible enough to account for multiple foreground error scenarios allowing the 21-cm sky-averaged signal to be detected without bias from simulated observations with a smooth conical log spiral antenna.