论文标题

基于感知的采样数据优化动态系统

Perception-Based Sampled-Data Optimization of Dynamical Systems

论文作者

Cothren, Liliaokeawawa, Bianchin, Gianluca, Dean, Sarah, Dall'Anese, Emiliano

论文摘要

在自主系统中基于感知的控制问题的激励中,本文解决了开发反馈控制器以调节动态系统的输入和状态的问题。特别是,我们考虑只需要从离散时间间隔收到的高维感觉数据估算国家的情况。我们开发了一个基于投影梯度下降方法的适应性的采样数据反馈控制器,其中包括神经网络作为不可或缺的组件,以从感知信息中估算系统的状态。我们得出足够的条件来保证控制循环的(本地)输入对状态的稳定性。此外,我们表明互连系统跟踪基础优化问题的解决方案轨迹,直到取决于神经网络的近似误差以及优化问题的时间变化性;后者源自随时间变化的安全性和绩效目标,输入约束和未知的干扰。作为代表性应用程序,我们通过用于基于视觉的自主驾驶的数值模拟来说明结果。

Motivated by perception-based control problems in autonomous systems, this paper addresses the problem of developing feedback controllers to regulate the inputs and the states of a dynamical system to optimal solutions of an optimization problem when one has no access to exact measurements of the system states. In particular, we consider the case where the states need to be estimated from high-dimensional sensory data received only at discrete time intervals. We develop a sampled-data feedback controller that is based on adaptations of a projected gradient descent method, and that includes neural networks as integral components to estimate the state of the system from perceptual information. We derive sufficient conditions to guarantee (local) input-to-state stability of the control loop. Moreover, we show that the interconnected system tracks the solution trajectory of the underlying optimization problem up to an error that depends on the approximation errors of the neural network and on the time-variability of the optimization problem; the latter originates from time-varying safety and performance objectives, input constraints, and unknown disturbances. As a representative application, we illustrate our results with numerical simulations for vision-based autonomous driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源