论文标题
2D超声心动图分段的贝叶斯优化
Bayesian Optimization of 2D Echocardiography Segmentation
论文作者
论文摘要
贝叶斯优化(BO)是一种经过良好研究的高参数调谐技术,比在高成本,高参数机器学习问题的网格搜索中更有效。超声心动图是一种无处不在的方式,用于评估心脏病学中心脏结构和功能。在这项工作中,我们使用BO来优化先前发表的深度卷积神经网络模型的建筑和训练相关的超参数,用于超声心动图中的多结构分割。在公平的比较中,最终的模型在顶端两次和四腔回波视图中的注释CAMUS数据集上的最新最新效果优于这一最新最新的模型。我们报告左心室(LV)心内膜,LV表心和左心房的平均骰子重叠分别为0.95、0.96和0.93。我们还观察到衍生临床指数的显着改善,包括LV末端 - 舒张量量(4.9ml vs. 6.7),末端终端体积(3.1ml vs. 5.2)和射血分数(2.6%vs. 3.7)的较小的绝对误差;一致性的更严格的限制,这些限制已经在非对比度回声的评估者间差异之内。这些结果证明了BO对于超声心动图分割的好处,而不是最近的最新框架,尽管需要使用大规模独立临床数据进行验证。
Bayesian Optimization (BO) is a well-studied hyperparameter tuning technique that is more efficient than grid search for high-cost, high-parameter machine learning problems. Echocardiography is a ubiquitous modality for evaluating heart structure and function in cardiology. In this work, we use BO to optimize the architectural and training-related hyperparameters of a previously published deep fully convolutional neural network model for multi-structure segmentation in echocardiography. In a fair comparison, the resulting model outperforms this recent state-of-the-art on the annotated CAMUS dataset in both apical two- and four-chamber echo views. We report mean Dice overlaps of 0.95, 0.96, and 0.93 on left ventricular (LV) endocardium, LV epicardium, and left atrium respectively. We also observe significant improvement in derived clinical indices, including smaller median absolute errors for LV end-diastolic volume (4.9mL vs. 6.7), end-systolic volume (3.1mL vs. 5.2), and ejection fraction (2.6% vs. 3.7); and much tighter limits of agreement, which were already within inter-rater variability for non-contrast echo. These results demonstrate the benefits of BO for echocardiography segmentation over a recent state-of-the-art framework, although validation using large-scale independent clinical data is required.