论文标题
角动量从Swift电子转移到茎中的球形纳米颗粒的理论和模拟
Theory and simulations of the angular momentum transfer from swift electrons to spherical nanoparticles in STEM
论文作者
论文摘要
扫描透射电子显微镜(Stem)中的电子束在研究样本上施加力和扭矩,幅度允许受控的纳米颗粒操纵(一种称为电子镊子的技术)。相关的理论研究主要集中于从Swift电子(如茎中使用的力)到纳米颗粒的力和线性动量转移。但是,关于相互作用的旋转方面的理论研究不仅有益于电子镊子的发展,而且会使电子显微镜(例如电子涡流)中的其他领域受益。从经典的电子动力学描述开始,我们提出了一个理论模型,以及有效的数值方法,以计算从茎迅速电子到球形纳米粒子的角动量传递。我们显示了向铝,金和二尺寸的不同大小的铝制动量转移的模拟。我们发现,转移的角动量始终垂直于系统的对称平面,在所有考虑的情况下都显示出恒定的方向。在模拟中,角动量转移随纳米颗粒的半径而增加,但随着电子速度或冲击参数的增加而下降。同样,对角动量传递的电贡献在磁性方面占主导地位,仅与高电子的速度相当(大于光速的90%)。此外,对于研究材料半径1 nm半径的纳米颗粒,我们发现了天粒子近似的有效性标准(其中纳米颗粒被建模为电点偶极子)。我们认为,这些发现有助于理解STEM实验中存在的旋转方面,并且对于电子镊子和其他电子显微镜相关技术的进一步发展可能很有用。
Electron beams in scanning transmission electron microscopy (STEM) exert forces and torques on study samples, with magnitudes that allow the controlled manipulation of nanoparticles (a technique called electron tweezers). Related theoretical research has mostly focused on the study of forces and linear momentum transfers from swift electrons (like those used in STEM) to nanoparticles. However, theoretical research on the rotational aspects of the interaction would benefit not only the development of electron tweezers, but also other fields within electron microscopy such as electron vortices. Starting from a classical-electrodynamics description, we present a theoretical model, alongside an efficient numerical methodology, to calculate the angular momentum transfer from a STEM swift electron to a spherical nanoparticle. We show simulations of angular momentum transfers to aluminum, gold, and bismuth nanoparticles of different sizes. We found that the transferred angular momentum is always perpendicular to the system's plane of symmetry, displaying a constant direction for all the cases considered. In the simulations, the angular momentum transfer increased with the radius of the nanoparticle, but decreased as the speed of the electron or the impact parameter increased. Also, the electric contribution to the angular momentum transfer dominated over the magnetic one, being comparable only for high electron's speeds (greater than 90% of the speed of light). Additionally, for nanoparticles with 1 nm radius of the studied materials, we found validity criteria for the small-particle approximation (in which the nanoparticle is modeled as an electric point dipole). We believe that these findings contribute to the understanding of rotational aspects present in STEM experiments, and might be useful for further developments in electron tweezers and other electron microscopy related techniques.