论文标题
顺序推荐器的潜在用户意图建模
Latent User Intent Modeling for Sequential Recommenders
论文作者
论文摘要
顺序推荐模型是现代工业推荐系统的重要组成部分。这些模型学会了预测用户在平台上的互动历史上可能与他的互动相互作用的下一个项目。但是,大多数顺序推荐人都缺乏对用户意图的更高层次的了解,这通常在线推动用户行为。因此,意图建模对于理解用户和优化长期用户体验至关重要。我们提出了一种概率建模方法,并将用户意图作为潜在变量,根据用户行为信号使用变异自动编码器(VAE)推断出用户意图。然后,鉴于推断的用户意图,对建议策略进行了相应的调整。我们通过离线分析以及大规模工业推荐平台上的实时实验来证明潜在用户意图建模的有效性。
Sequential recommender models are essential components of modern industrial recommender systems. These models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform. Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online. Intent modeling is thus critical for understanding users and optimizing long-term user experience. We propose a probabilistic modeling approach and formulate user intent as latent variables, which are inferred based on user behavior signals using variational autoencoders (VAE). The recommendation policy is then adjusted accordingly given the inferred user intent. We demonstrate the effectiveness of the latent user intent modeling via offline analyses as well as live experiments on a large-scale industrial recommendation platform.