论文标题
与混合多径TCP的公平有效的分布式边缘学习
Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP
论文作者
论文摘要
无线上的分布式边缘学习(DEL)的瓶颈已经从计算转移到通信,主要是DEL的聚合平均(AGG-AG-AG-ARVG)过程。 DEL的现有传输控制协议(TCP)的数据网络方案是应用程序不可能的,并且无法根据应用层的要求进行调整。结果,他们引入了巨大的时间和不希望的问题,例如不公平和散乱者。其他先前的缓解解决方案具有显着的局限性,因为它们平衡了跨路径工人的数据流量,但是当路径表现出差异时,经常会导致积压失衡,从而导致散乱者。为了促进更有生产力的DEL,我们通过将基于模型的基于模型和深度强化学习(DRL)的MPTCP结合到DEL来开发混合多径TCP(MPTCP),以努力实现更快的DEL和更好的公平迭代(通过改善散乱者)。混合MPTCP基本上集成了两个根本的TCP开发:i)成功现有的基于模型的MPTCP控制策略和ii)基于高级新兴DRL的技术,并引入了一种新型混合MPTCP数据传输,以简化Agg-avg流程的通信。广泛的仿真结果表明,所提出的混合MPTCP可以克服过度的时间消耗,并改善DEL的应用层不公平,而无需注射额外的不稳定和散乱者。
The bottleneck of distributed edge learning (DEL) over wireless has shifted from computing to communication, primarily the aggregation-averaging (Agg-Avg) process of DEL. The existing transmission control protocol (TCP)-based data networking schemes for DEL are application-agnostic and fail to deliver adjustments according to application layer requirements. As a result, they introduce massive excess time and undesired issues such as unfairness and stragglers. Other prior mitigation solutions have significant limitations as they balance data flow rates from workers across paths but often incur imbalanced backlogs when the paths exhibit variance, causing stragglers. To facilitate a more productive DEL, we develop a hybrid multipath TCP (MPTCP) by combining model-based and deep reinforcement learning (DRL) based MPTCP for DEL that strives to realize quicker iteration of DEL and better fairness (by ameliorating stragglers). Hybrid MPTCP essentially integrates two radical TCP developments: i) successful existing model-based MPTCP control strategies and ii) advanced emerging DRL-based techniques, and introduces a novel hybrid MPTCP data transport for easing the communication of the Agg-Avg process. Extensive emulation results demonstrate that the proposed hybrid MPTCP can overcome excess time consumption and ameliorate the application layer unfairness of DEL effectively without injecting additional inconstancy and stragglers.