论文标题
使用社区桥接节点的播放器排名极低预算的算法影响社交网络中的最大化
A Spreader Ranking Algorithm for Extremely Low-budget Influence Maximization in Social Networks using Community Bridge Nodes
论文作者
论文摘要
近年来,社交网络平台在与人建立联系以及传播思想和观点等群众中广受欢迎。这为这些平台上的特定用户广告和建议打开了大门,由于其在目标广告,病毒营销和个性化建议中的广泛适用性,因此对社交网络的影响最大化(IM)的重大关注。 IM的目的是确定网络中的某些节点,这可以帮助通过扩散级联级联对某些信息的传播最大化。尽管已经为IM提出了几项作品,但大多数人在全部利用社区结构方面效率低下。在这项工作中,我们提出了一种基于社区结构的方法,该方法采用K壳算法来为低预算场景的种子节点与社区之间的连接生成分数。此外,我们的方法采用社区内部的熵来确保信息在社区内的适当传播。我们选择独立的级联模型来模拟信息传播并在四个评估指标上进行评估。我们验证了我们在八个公共网络上提出的方法,发现它的表现明显优于这些指标的基线方法,同时仍然相对高效。
In recent years, social networking platforms have gained significant popularity among the masses like connecting with people and propagating ones thoughts and opinions. This has opened the door to user-specific advertisements and recommendations on these platforms, bringing along a significant focus on Influence Maximisation (IM) on social networks due to its wide applicability in target advertising, viral marketing, and personalized recommendations. The aim of IM is to identify certain nodes in the network which can help maximize the spread of certain information through a diffusion cascade. While several works have been proposed for IM, most were inefficient in exploiting community structures to their full extent. In this work, we propose a community structures-based approach, which employs a K-Shell algorithm in order to generate a score for the connections between seed nodes and communities for low-budget scenarios. Further, our approach employs entropy within communities to ensure the proper spread of information within the communities. We choose the Independent Cascade (IC) model to simulate information spread and evaluate it on four evaluation metrics. We validate our proposed approach on eight publicly available networks and find that it significantly outperforms the baseline approaches on these metrics, while still being relatively efficient.