论文标题
在有电磁场的情况下,具有永久性电偶极矩的非交换性dirac振荡器
The noncommutative Dirac oscillator with a permanent electric dipole moment in the presence of an electromagnetic field
论文作者
论文摘要
在本文中,我们研究了在(2+1)维度中存在电磁场的情况下,在存在电磁场的情况下,具有永久性电偶极矩的非交通式振荡器的结合状态溶液。我们考虑了抗螺旋线圈产生的径向磁场,以及Stark效应的均匀电场。接下来,我们确定由两个组分的狄拉克纺纱器和相对论能量谱给出的系统的结合状态解决方案。我们注意到,该纺纱器是根据广义的Laguerre多项式编写的,并且该频谱是势能$ u $的线性功能,并且明确取决于量子数量$ n $ $ n $和$ m $,spin参数$ s $,以及四个角度频率,以及四个角度的频率:$ \ tilde $,$,$,$,$,$,$ operm $ ghom $ ch $ωsum和ωsum和ωs$ωs和ωsum和ωsum和ωsum和ωsum和ωsumghos和ωsumω$ω振荡器,$ \tildeΩ$是``回旋频率''的一种类型,而$ω_θ$和$ω_η$是位置和动量的非交换频率。此外,我们讨论了这种频谱的一些有趣的特征,例如,它的堕落性,然后我们以三种不同的$ n $的函数为图形地分析了频谱的行为,这是四个频率的函数,具有$ u $的影响。最后,我们还详细分析了结果的非同性主义限制,并将我们的问题与其他作品进行了比较,在此我们验证了我们的结果概括了文献的几种特定案例。
In this paper, we investigate the bound-state solutions of the noncommutative Dirac oscillator with a permanent electric dipole moment in the presence of an electromagnetic field in (2+1)-dimensions. We consider a radial magnetic field generated by anti-Helmholtz coils, and the uniform electric field of the Stark effect. Next, we determine the bound-state solutions of the system, given by the two-component Dirac spinor and the relativistic energy spectrum. We note that this spinor is written in terms of the generalized Laguerre polynomials, and this spectrum is a linear function on the potential energy $U$, and depends explicitly on the quantum numbers $n$ and $m$, spin parameter $s$, and of four angular frequencies: $ω$, $\tildeω$, $ω_θ$, and $ω_η$, where $ω$ is the frequency of the oscillator, $\tildeω$ is a type of ``cyclotron frequency'', and $ω_θ$ and $ω_η$ are the noncommutative frequencies of position and momentum. Besides, we discussed some interesting features of such a spectrum, for example, its degeneracy, and then we graphically analyze the behavior of the spectrum as a function of the four frequencies for three different values of $n$, with and without the influence of $U$. Finally, we also analyze in detail the nonrelativistic limit of our results, and comparing our problem with other works, where we verified that our results generalize several particular cases of the literature.