论文标题
达到单独稳定的联盟结构
Reaching Individually Stable Coalition Structures
论文作者
论文摘要
多代理系统中联盟形成的正式研究通常在享乐游戏的框架中实现,该框架源于经济理论。这项研究分支的主要重点是决定满足各种稳定标准的联盟结构的存在的存在和计算复杂性。基于个人行为组成联盟的实际过程很少受到关注。在本文中,我们研究了简单动力学的融合,从而在各种既定的享乐游戏类别中进行了稳定的分区,包括匿名,二分法,分数和享乐多样性多样性游戏。我们认为的动态是基于个人稳定性的:如果代理商更好,并且没有欢迎联盟的成员会加入另一个联盟。 我们的结果是三倍。首先,我们确定了动态(快速)收敛的条件。为此,我们基于同时使用多个相互缠绕的潜在功能的使用,并建立了一个减少的,从而开发了新技术,并建立了匿名享乐游戏与享乐多样性游戏之间的紧密关系。其次,我们提供精心设计的反例,确定存在单独稳定分区的紧密界限。第三,我们研究了与联盟形成动态有关的问题的计算复杂性。特别是,我们解决了Bogomolnaia和Jackson(2002),Brandl等人提出的开放问题。 (2005年)以及Boehmer和Elkind(2020)。
The formal study of coalition formation in multi-agent systems is typically realized in the framework of hedonic games, which originate from economic theory. The main focus of this branch of research has been on the existence and the computational complexity of deciding the existence of coalition structures that satisfy various stability criteria. The actual process of forming coalitions based on individual behavior has received little attention. In this paper, we study the convergence of simple dynamics leading to stable partitions in a variety of established classes of hedonic games including anonymous, dichotomous, fractional, and hedonic diversity games. The dynamics we consider is based on individual stability: an agent will join another coalition if she is better off and no member of the welcoming coalition is worse off. Our results are threefold. First, we identify conditions for the (fast) convergence of our dynamics. To this end, we develop new techniques based on the simultaneous usage of multiple intertwined potential functions and establish a reduction uncovering a close relationship between anonymous hedonic games and hedonic diversity games. Second, we provide elaborate counterexamples determining tight boundaries for the existence of individually stable partitions. Third, we study the computational complexity of problems related to the coalition formation dynamics. In particular, we settle open problems suggested by Bogomolnaia and Jackson (2002), Brandl et al. (2005), and Boehmer and Elkind (2020).