论文标题

使用卷积神经网络量子近似优化算法参数预测

Quantum Approximate Optimization Algorithm Parameter Prediction Using a Convolutional Neural Network

论文作者

Xie, Ningyi, Lee, Xinwei, Cai, Dongsheng, Saito, Yoshiyuki, Asai, Nobuyoshi

论文摘要

量子近似优化算法(QAOA)是一种量子古典混合算法,旨在生成近似解决方案,以解决组合优化问题。在QAOA中,量子部分准备了编码解决方案的量子参数化状态,其中参数通过经典优化器进行了优化。但是,当量子电路变得更深时,很难找到最佳参数。因此,关于QAOA的性能和优化成本有许多积极的研究。在这项工作中,我们构建了一个卷积神经网络,通过深度QAOA对应物的参数来预测深度​​QAOA实例的参数。我们根据此模型提出了两种策略。首先,我们将模型反复应用于某个深度QAOA的一组初始值。它成功地启动了深度10 QAOA实例,而每个模型仅经过小于6的深度参数的训练。第二,重复应用模型直到达到最大期望值为止。在264erdős-rényi图上,最大切割的平均近似值为0.9759,而优化器仅用于生成模型的第一个输入。

The Quantum approximate optimization algorithm (QAOA) is a quantum-classical hybrid algorithm aiming to produce approximate solutions for combinatorial optimization problems. In the QAOA, the quantum part prepares a quantum parameterized state that encodes the solution, where the parameters are optimized by a classical optimizer. However, it is difficult to find optimal parameters when the quantum circuit becomes deeper. Hence, there is numerous active research on the performance and the optimization cost of QAOA. In this work, we build a convolutional neural network to predict parameters of depth QAOA instance by the parameters from the depth QAOA counterpart. We propose two strategies based on this model. First, we recurrently apply the model to generate a set of initial values for a certain depth QAOA. It successfully initiates depth 10 QAOA instances, whereas each model is only trained with the parameters from depths less than 6. Second, the model is applied repetitively until the maximum expected value is reached. An average approximation ratio of 0.9759 for Max-Cut over 264 Erdős-Rényi graphs is obtained, while the optimizer is only adopted for generating the first input of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源