论文标题

部分可观测时空混沌系统的无模型预测

SFPDML: Securer and Faster Privacy-Preserving Distributed Machine Learning based on MKTFHE

论文作者

Wang, Hongxiao, Jiang, Zoe L., Zhao, Yanmin, Yiu, Siu-Ming, Yang, Peng, Chen, Man, Tan, Zejiu, Jin, Bohan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In recent years, distributed machine learning has garnered significant attention. However, privacy continues to be an unresolved issue within this field. Multi-key homomorphic encryption over torus (MKTFHE) is one of the promising candidates for addressing this concern. Nevertheless, there may be security risks in the decryption of MKTFHE. Moreover, to our best known, the latest works about MKTFHE only support Boolean operation and linear operation which cannot directly compute the non-linear function like Sigmoid. Therefore, it is still hard to perform common machine learning such as logistic regression and neural networks in high performance. In this paper, we first discover a possible attack on the existing distributed decryption protocol for MKTFHE and subsequently introduce secret sharing to propose a securer one. Next, we design a new MKTFHE-friendly activation function via \emph{homogenizer} and \emph{compare quads}. Finally, we utilize them to implement logistic regression and neural network training in MKTFHE. Comparing the efficiency and accuracy between using Taylor polynomials of Sigmoid and our proposed function as an activation function, the experiments show that the efficiency of our function is 10 times higher than using 7-order Taylor polynomials straightly and the accuracy of the training model is similar to using a high-order polynomial as an activation function scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源