论文标题

部分可观测时空混沌系统的无模型预测

Unique identification and domination of edges in a graph: The vertex-edge dominant edge metric dimension

论文作者

Ikhlaq, H. M., Hayat, S., Siddiqui, H. M. A.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Dominating sets and resolving sets have important applications in control theory and computer science. In this paper, we introduce an edge-analog of the classical dominant metric dimension of graphs. By combining the concepts of a vertex-edge dominating set and an edge resolving set, we introduce the notion of a vertex-edge dominant edge resolving set of a graph. We call the minimum cardinality of such a set in a graph $\G$, the vertex-edge dominant edge metric dimension $\g_{emd}(\G)$ of $\G$. The new parameter $\g_{emd}$ is calculated for some common families such as paths, cycles, complete bipartite graphs, wheel and fan graphs. We also calculate $\g_{emd}$ for some Cartesian products of path with path and path with cycle. Importantly, some general results and bounds are presented for this new parameter. We also conduct a comparative analysis of $\g_{emd}$ with the dominant metric dimension of graphs. Comparison shows that these two parameters are not comparable, in general. Upon considering the class of bipartite graphs, we show that $\g_{emd}(T_n)$ of a tree $T_n$ is always less than or equal to its dominant metric dimension. However, we show that for non-tree bipartite graphs, the parameter is not comparable just like general graphs. Based on the results in this paper, we propose some open problems at the end.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源