论文标题
FEDFA:具有功能锚的联合学习以使功能和分类器的异质数据对齐
FedFA: Federated Learning with Feature Anchors to Align Features and Classifiers for Heterogeneous Data
论文作者
论文摘要
联合学习允许多个客户在不交换数据的情况下协作训练模型,从而保留数据隐私。不幸的是,由于客户的异质数据,它遭受了重大的性能下降。通用解决方案涉及设计辅助损失,以使体重差异或在本地培训期间特征不一致。但是,我们发现这些方法没有预期的性能,因为它们忽略了特征不一致和分类器之间的差异之间的恶性循环。这种恶性循环导致客户模型在不一致的特征空间中更新,并具有更多差异分类器。为了打破恶性循环,我们提出了一个具有特征锚(FedFA)的名为Federated Learning的新型框架。 Fedfa利用功能锚来对齐功能并同时校准分类器。这使客户模型可以在本地培训期间具有一致分类器的共享功能空间更新。从理论上讲,我们分析了FedFA的非凸照收敛速率。我们还证明了FedFA中特征对齐和分类器校准的集成在功能和分类器更新之间带来了一个良性周期,这打破了当前方法中存在的恶性循环。广泛的实验表明,在标签分布偏斜和特征分布偏斜下,FedFA在各种分类数据集上的现有方法显着优于现有方法。
Federated learning allows multiple clients to collaboratively train a model without exchanging their data, thus preserving data privacy. Unfortunately, it suffers significant performance degradation due to heterogeneous data at clients. Common solutions involve designing an auxiliary loss to regularize weight divergence or feature inconsistency during local training. However, we discover that these approaches fall short of the expected performance because they ignore the existence of a vicious cycle between feature inconsistency and classifier divergence across clients. This vicious cycle causes client models to be updated in inconsistent feature spaces with more diverged classifiers. To break the vicious cycle, we propose a novel framework named Federated learning with Feature Anchors (FedFA). FedFA utilizes feature anchors to align features and calibrate classifiers across clients simultaneously. This enables client models to be updated in a shared feature space with consistent classifiers during local training. Theoretically, we analyze the non-convex convergence rate of FedFA. We also demonstrate that the integration of feature alignment and classifier calibration in FedFA brings a virtuous cycle between feature and classifier updates, which breaks the vicious cycle existing in current approaches. Extensive experiments show that FedFA significantly outperforms existing approaches on various classification datasets under label distribution skew and feature distribution skew.