论文标题
部分可观测时空混沌系统的无模型预测
Symmetric Tensor Networks for Generative Modeling and Constrained Combinatorial Optimization
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Constrained combinatorial optimization problems abound in industry, from portfolio optimization to logistics. One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space. In some heuristic solvers, these are typically addressed by introducing certain Lagrange multipliers in the cost function, by relaxing them in some way, or worse yet, by generating many samples and only keeping valid ones, which leads to very expensive and inefficient searches. In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric tensor networks (TNs) and leverage their applicability as quantum-inspired generative models to assist in the search of solutions to combinatorial optimization problems. This allows us to exploit the generalization capabilities of TN generative models while constraining them so that they only output valid samples. Our constrained TN generative model efficiently captures the constraints by reducing number of parameters and computational costs. We find that at tasks with constraints given by arbitrary equalities, symmetric Matrix Product States outperform their standard unconstrained counterparts at finding novel and better solutions to combinatorial optimization problems.