论文标题
部分可观测时空混沌系统的无模型预测
Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep Gaussian Process (iTDGP)
论文作者
论文摘要
作为全球死亡率和残疾的主要原因之一,当由于动脉阻塞而突然中断了大脑的血液供应时,就会发生急性缺血性中风(AIS)。在AIS发作的几秒钟内,围绕阻塞动脉死亡的脑细胞导致病变的进展。对现有病变的自动预测在AIS治疗计划和预防进一步伤害中起着至关重要的作用。当前的标准AIS评估方法是从计算机断层扫描(CTP)图像中提取的3D测量图的阈值不够准确。由于这一事实,在本文中,我们提出了不平衡的时间深度高斯过程(ITDGP),这是一种概率模型,可以通过使用基线CTP时间序列来改善AIS病变预测。我们提出的模型可以有效地从CTP时间序列中提取时间信息,并将其映射到大脑体素的类标签。此外,通过使用批处理培训和体素级分析,ITDGP可以向几个患者学习,并且对不平衡的类别具有强大的作用。此外,我们的模型结合了能够使用空间信息提高预测准确性的后处理器。我们在Isles 2018和艾伯塔大学医院(UAH)数据集上进行的全面实验表明,ITDGP的性能优于最先进的AIS病变预测因子,分别获得了71.42%和65.37%的(跨效率)骰子分别,分别具有显着的P <0.05。
As one of the leading causes of mortality and disability worldwide, Acute Ischemic Stroke (AIS) occurs when the blood supply to the brain is suddenly interrupted because of a blocked artery. Within seconds of AIS onset, the brain cells surrounding the blocked artery die, which leads to the progression of the lesion. The automated and precise prediction of the existing lesion plays a vital role in the AIS treatment planning and prevention of further injuries. The current standard AIS assessment method, which thresholds the 3D measurement maps extracted from Computed Tomography Perfusion (CTP) images, is not accurate enough. Due to this fact, in this article, we propose the imbalanced Temporal Deep Gaussian Process (iTDGP), a probabilistic model that can improve AIS lesions prediction by using baseline CTP time series. Our proposed model can effectively extract temporal information from the CTP time series and map it to the class labels of the brain's voxels. In addition, by using batch training and voxel-level analysis iTDGP can learn from a few patients and it is robust against imbalanced classes. Moreover, our model incorporates a post-processor capable of improving prediction accuracy using spatial information. Our comprehensive experiments, on the ISLES 2018 and the University of Alberta Hospital (UAH) datasets, show that iTDGP performs better than state-of-the-art AIS lesion predictors, obtaining the (cross-validation) Dice score of 71.42% and 65.37% with a significant p<0.05, respectively.