论文标题

通过文化学习教授算法推理

Teaching Algorithmic Reasoning via In-context Learning

论文作者

Zhou, Hattie, Nova, Azade, Larochelle, Hugo, Courville, Aaron, Neyshabur, Behnam, Sedghi, Hanie

论文摘要

大型语言模型(LLMS)已通过扩展模型和数据大小来显示出在上下文学习能力的提高。尽管取得了这种进展,但LLM仍无法解决算法推理问题。在提供最终答案的基本原理的同时,Anil等人的多步推理问题进一步改善了。 2022年表明,即使是简单的算法推理任务,例如奇偶校验也远未解决。在这项工作中,我们确定并研究了成功向LLMS成功教授算法推理的四个关键阶段:(1)将算法作为技能制定,(2)同时教授多个技能(技能积累),(3)教学如何结合技能(技能组成)和(4)教学技能如何使用技能来使用技能来使用工具。我们表明,可以通过文化学习来向LLM教授算法推理,我们将其称为算法提示。我们对各种算术和定量推理任务进行评估,并在现有提示技术中表现出显着提高性能。特别是,对于长期的平等,加法,乘法和减法,与最佳可用基线相比,我们分别达到了大约10倍,9倍,5x和2x的误差。

Large language models (LLMs) have shown increasing in-context learning capabilities through scaling up model and data size. Despite this progress, LLMs are still unable to solve algorithmic reasoning problems. While providing a rationale with the final answer has led to further improvements in multi-step reasoning problems, Anil et al. 2022 showed that even simple algorithmic reasoning tasks such as parity are far from solved. In this work, we identify and study four key stages for successfully teaching algorithmic reasoning to LLMs: (1) formulating algorithms as skills, (2) teaching multiple skills simultaneously (skill accumulation), (3) teaching how to combine skills (skill composition) and (4) teaching how to use skills as tools. We show that it is possible to teach algorithmic reasoning to LLMs via in-context learning, which we refer to as algorithmic prompting. We evaluate our approach on a variety of arithmetic and quantitative reasoning tasks, and demonstrate significant boosts in performance over existing prompting techniques. In particular, for long parity, addition, multiplication and subtraction, we achieve an error reduction of approximately 10x, 9x, 5x and 2x respectively compared to the best available baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源