论文标题
瑟斯顿脊柱的尺寸
The dimension of Thurston's spine
论文作者
论文摘要
我们证明,对于每$ \ varepsilon> 0 $,存在一些$ g \ geq 2 $,因此其收缩填充的属属属属的封闭双曲线表面至少具有至少$(5- \ varepsilon)g $。特别是,该集合的维度(提出为模量空间的脊柱)的尺寸大于映射类组的虚拟共同体学维度。
We show that for every $\varepsilon>0$, there exists some $g\geq 2$ such that the set of closed hyperbolic surfaces of genus $g$ whose systoles fill has dimension at least $(5-\varepsilon) g$. In particular, the dimension of this set -- proposed as a spine for moduli space by Thurston -- is larger than the virtual cohomological dimension of the mapping class group.