论文标题

双重意识的对比度联盟半监督学习

Dual Class-Aware Contrastive Federated Semi-Supervised Learning

论文作者

Guo, Qi, Qi, Yong, Qi, Saiyu, Wu, Di

论文摘要

联合的半监督学习(FSSL)促进了标记的客户,未标记的客户共同培训全球模型而无需共享私人数据。现有的FSSL方法主要采用伪标记和一致性正则化来利用未标记数据的知识,从而在原始数据利用率方面取得了显着的成功。但是,这些训练过程受到上传标记和未标记客户端的本地模型之间的巨大偏差,以及嘈杂的伪标签引入的确认偏差,这两者都会对全球模型的性能产生负面影响。在本文中,我们提出了一种新颖的FSSL方法,称为双重级别的对比度联盟半监督学习(DCCFSSL)。此方法既说明了每个客户端数据的本地类感知分布,也说明了功能空间中所有客户端数据的全局班级感知分布。通过实施双重意识的对比模块,DCCFSSL为不同的客户建立了一个统一的培训目标,以解决大型偏差,并将对比度信息包含在功能空间中,以减轻确认偏见。此外,DCCFSSL引入了一项符合身份验证的聚合技术,以改善服务器的聚合鲁棒性。我们的综合实验表明,DCCFSSL在三个基准数据集上的当前最新方法优于当前的最新方法,并在CIFAR-10,CIFAR-100和STL-10数据集上使用RelabeL bear的未标记客户端超过了FedAvg。据我们所知,我们是第一个提出仅利用10 \%标记客户的FSSL方法的人,同时仍然与标准联合监督学习相比,它仍然可以实现卓越的性能,后者使用所有具有标签数据的客户。

Federated semi-supervised learning (FSSL), facilitates labeled clients and unlabeled clients jointly training a global model without sharing private data. Existing FSSL methods predominantly employ pseudo-labeling and consistency regularization to exploit the knowledge of unlabeled data, achieving notable success in raw data utilization. However, these training processes are hindered by large deviations between uploaded local models of labeled and unlabeled clients, as well as confirmation bias introduced by noisy pseudo-labels, both of which negatively affect the global model's performance. In this paper, we present a novel FSSL method called Dual Class-aware Contrastive Federated Semi-Supervised Learning (DCCFSSL). This method accounts for both the local class-aware distribution of each client's data and the global class-aware distribution of all clients' data within the feature space. By implementing a dual class-aware contrastive module, DCCFSSL establishes a unified training objective for different clients to tackle large deviations and incorporates contrastive information in the feature space to mitigate confirmation bias. Moreover, DCCFSSL introduces an authentication-reweighted aggregation technique to improve the server's aggregation robustness. Our comprehensive experiments show that DCCFSSL outperforms current state-of-the-art methods on three benchmark datasets and surpasses the FedAvg with relabeled unlabeled clients on CIFAR-10, CIFAR-100, and STL-10 datasets. To our knowledge, we are the first to present an FSSL method that utilizes only 10\% labeled clients, while still achieving superior performance compared to standard federated supervised learning, which uses all clients with labeled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源