论文标题
拓扑半学CO $ _ {3} $ sn $ _ {2-x} $ in $ _ {x} $ s $ _ {2} $的旋转结构和动力学
Spin structure and dynamics of the topological semimetal Co$_{3}$Sn$_{2-x}$In$_{x}$S$_{2}$
论文作者
论文摘要
通常在具有损坏的时间反转对称性的铁磁(FM)金属中观察到的异常大厅效应(AHE)取决于电子和磁性。在Co $ _ {3}中,$ sn $ _ {2-x} $ in $ _ {x} $ s $ _ {2} $,巨大的AHE归因于与FM Weyl Semimetal阶段相关的浆果曲率,但最近的研究报告了复杂的磁性。我们使用中子散射来确定自旋动力学和结构作为$ x $的函数,并提供对AHE和磁性相互作用的微观理解。旋转间隙和刚度表明与AHE一致的Weyl Fermions的贡献。磁性结构从$ c $轴铁磁性($ x $ = 0)演变为降低的$ c $轴时刻的倾斜抗磁力(AFM)结构,并以$ x $ = 0.12的价格向AFM订购,并进一步降低了$ c $ c $ c $ x axis fm MONS,$ x $ x $ = 0.3 $ = 0.3 $ = 0.3。由于非胶线旋转可以在充当虚拟磁场的真实空间中诱导非零浆果曲率,因此我们的结果揭示了另一种AHE贡献,从而确立了磁性对运输的影响。
The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co$_{3}$Sn$_{2-x}$In$_{x}$S$_{2}$, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function of $x$ and provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves from $c$-axis ferromagnetism at $x$ = 0 to a canted antiferromagnetic (AFM) structure with reduced $c$-axis moment and in-plane AFM order at $x$ = 0.12 and further reduced $c$-axis FM moment at $x$ = 0.3. Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport.