论文标题

彩虹饱和数是线性的

The rainbow saturation number is linear

论文作者

Behague, Natalie, Johnston, Tom, Letzter, Shoham, Morrison, Natasha, Ogden, Shannon

论文摘要

给定图表$ h $,我们说如果不包含$ h $的彩虹副本,则是$ h $ rainbow饱和的$ g $,但是任何颜色的任何非边缘都会产生$ h $的彩虹副本。彩虹饱和数$ \ text {rsat}(n,h)$是所有$ h $ rainbow饱和的边缘颜色图中的最小边数。我们证明,对于任何非空图$ h $,彩虹饱和数字在$ n $中是线性的,因此证明了Girão,Lewis和Popielarz的猜想。此外,我们还提供了完整图的彩虹饱和数量的上限,这是Girão,Lewis和Popielarz的第二个猜想。

Given a graph $H$, we say that an edge-coloured graph $G$ is $H$-rainbow saturated if it does not contain a rainbow copy of $H$, but the addition of any non-edge in any colour creates a rainbow copy of $H$. The rainbow saturation number $\text{rsat}(n,H)$ is the minimum number of edges among all $H$-rainbow saturated edge-coloured graphs on $n$ vertices. We prove that for any non-empty graph $H$, the rainbow saturation number is linear in $n$, thus proving a conjecture of Girão, Lewis, and Popielarz. In addition, we also give an improved upper bound on the rainbow saturation number of the complete graph, disproving a second conjecture of Girão, Lewis, and Popielarz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源