论文标题

在四阶纤维取向张量的相空间上

On the phase space of fourth-order fiber-orientation tensors

论文作者

Bauer, Julian Karl, Schneider, Matti, Böhlke, Thomas

论文摘要

纤维取向量张量紧凑地描述了纤维取向分布的相关特征,因此在注射式模拟和随后的机械分析中无处不在。在迄今为止的工程应用中,二阶光纤取消张量是兴趣的基本量,并且通过闭合近似值获得了四阶光纤取向张量。不幸的是,这样的描述极大地限制了建模过程的预测能力,因为此类封闭不利用可能的四阶光纤取向张量的财富,并且限制了二阶光纤定向量张紧器的限制意味着文物。基于二阶纤维取消张量的封闭面临一个基本问题 - 可以实现哪些四阶光纤张量张量?在文献中,仅发现将纤维取向张量连接到纤维取向分布的必要条件。在本文中,我们表明,在两个和三个空间维度的物理相关情况下,通常被认为是必要的条件,正半弱性和痕量条件,也足以成为四阶纤维取向张量。此外,我们表明这些条件在较高的维度上不足。该论点基于凸双重性和D. Hilbert(1888年)的著名定理,涉及第四学位的阳性和均质多项式的可分解性。结果对于建模流量和纤维增强复合材料的微观结构具有许多影响,特别是对于此类材料的有效弹性常数。

Fiber-orientation tensors describe the relevant features of the fiber-orientation distribution compactly and are thus ubiquitous in injection-molding simulations and subsequent mechanical analyses. In engineering applications to date, the second-order fiber-orientation tensor is the basic quantity of interest, and the fourth-order fiber-orientation tensor is obtained via a closure approximation. Unfortunately, such a description limits the predictive capabilities of the modeling process significantly, because the wealth of possible fourth-order fiber-orientation tensors is not exploited by such closures, and the restriction to second-order fiber-orientation tensors implies artifacts. Closures based on the second-order fiber-orientation tensor face a fundamental problem - which fourth-order fiber-orientation tensors can be realized? In the literature, only necessary conditions for a fiber-orientation tensor to be connected to a fiber-orientation distribution are found. In this article, we show that the typically considered necessary conditions, positive semidefiniteness and a trace condition, are also sufficient for being a fourth-order fiber-orientation tensor in the physically relevant case of two and three spatial dimensions. Moreover, we show that these conditions are not sufficient in higher dimensions. The argument is based on convex duality and a celebrated theorem of D. Hilbert (1888) on the decomposability of positive and homogeneous polynomials of degree four. The result has numerous implications for modeling the flow and the resulting microstructures of fiber-reinforced composites, in particular for the effective elastic constants of such materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源