论文标题
随机建模对星系模拟预测能力的影响
The impact of stochastic modeling on the predictive power of galaxy formation simulations
论文作者
论文摘要
所有现代的星系组模型在其子网处方中采用随机元素,以在整个时代域内离散连续方程。在本文中,我们研究了这些模型的随机性如何,尤其是恒星形成,黑洞积聚及其相关的反馈,这些反馈作用于小($ <$ kpc)的尺度,可以在宏观的星系特性(例如,在长($> $ gyr)时期对宏观星系特性(例如,恒星质量和大小)对宏观的星系性能进行反应。我们发现,即使星系通过数万个粒子解决了星系,在同一对象的重新模拟之间的重新模拟之间,在Swift代码中实现的EAGLE模型预测的缩放关系中的散射可能会受到显着影响。然后,我们说明如何使用同一对象的重新模拟来更好地理解基本模型,通过显示Galaxy Stellar质量质量和黑洞质量之间的相关性如何消失在最高的黑洞质量($ M _ {\ rm BH}> 10^8 $ M $ _ \ _ \ odot $),表明反馈周期可能会被外部进程中断。我们发现,尽管在许多物体上累积收集的属性在随机可变性(例如缩放关系的中位数)相对稳健,但单个星系(例如星系恒星质量)的特性可能会变化25 \%,甚至可以变化,甚至可以远离良好的分辨率,从而驱动着良好的物理学(Blass the Bress the Bround Thressics(Black hole feffercepback)和Merraxs Merraxs之间。我们建议对宇宙学模拟中各个对象进行研究,并谨慎处理,任何旨在密切研究此类对象的研究都必须考虑其结果中的随机变异性。
All modern galaxy formation models employ stochastic elements in their sub-grid prescriptions to discretise continuous equations across the time domain. In this paper, we investigate how the stochastic nature of these models, notably star formation, black hole accretion, and their associated feedback, that act on small ($<$ kpc) scales, can back-react on macroscopic galaxy properties (e.g. stellar mass and size) across long ($>$ Gyr) timescales. We find that the scatter in scaling relations predicted by the EAGLE model implemented in the SWIFT code can be significantly impacted by random variability between re-simulations of the same object, even when galaxies are resolved by tens of thousands of particles. We then illustrate how re-simulations of the same object can be used to better understand the underlying model, by showing how correlations between galaxy stellar mass and black hole mass disappear at the highest black hole masses ($M_{\rm BH} > 10^8$ M$_\odot$), indicating that the feedback cycle may be interrupted by external processes. We find that although properties that are collected cumulatively over many objects are relatively robust against random variability (e.g. the median of a scaling relation), the properties of individual galaxies (such as galaxy stellar mass) can vary by up to 25\%, even far into the well-resolved regime, driven by bursty physics (black hole feedback) and mergers between galaxies. We suggest that studies of individual objects within cosmological simulations be treated with caution, and that any studies aiming to closely investigate such objects must account for random variability within their results.