论文标题

通过跨越神经网络的传播延迟进行局部学习

Local learning through propagation delays in spiking neural networks

论文作者

Farner, Jørgen Jensen, Ramstad, Ola Huse, Nichele, Stefano, Heiney, Kristine

论文摘要

我们提出了一项新的局部学习规则,用于尖峰神经网络,其中峰值传播时间经历活动依赖性可塑性。我们的可塑性规则会使突触前的尖峰时间对齐,以产生更强,更快的响应。输入是由延迟编码编码的,并且输出通过匹配相似的输出尖峰活动模式来解码。我们在三层馈电网络中演示了该方法的使用,并带有手写数字数据库的输入。网络在培训后始终提高其分类准确性,并通过这种方法进行培训还允许网络推广到训练期间未见的输入类。我们提出的方法利用了尖峰神经元支持许多不同时间锁定的尖峰序列的能力,每种尖峰序列都可以通过不同的输入激活来激活。此处显示的概念验证证明了局部延迟学习的巨大潜力,以扩大尖峰神经网络的记忆能力和普遍性。

We propose a novel local learning rule for spiking neural networks in which spike propagation times undergo activity-dependent plasticity. Our plasticity rule aligns pre-synaptic spike times to produce a stronger and more rapid response. Inputs are encoded by latency coding and outputs decoded by matching similar patterns of output spiking activity. We demonstrate the use of this method in a three-layer feedfoward network with inputs from a database of handwritten digits. Networks consistently improve their classification accuracy after training, and training with this method also allowed networks to generalize to an input class unseen during training. Our proposed method takes advantage of the ability of spiking neurons to support many different time-locked sequences of spikes, each of which can be activated by different input activations. The proof-of-concept shown here demonstrates the great potential for local delay learning to expand the memory capacity and generalizability of spiking neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源