论文标题

二维海森堡反铁磁铁中的远距离平衡普遍性

Far-from-equilibrium universality in two-dimensional Heisenberg antiferromagnets

论文作者

Li, Zhaoyi, Glorioso, Paolo, Rodriguez-Nieva, Joaquin F.

论文摘要

我们研究了分离的二维海森堡抗铁磁体的远程平衡动力学。我们考虑旋转螺旋初始条件,这些条件将二维晶格中的位置依赖性交错磁化(或NEEL顺序)刻印出来。值得注意的是,尽管该系统在有限的能量下没有远距离的顺序,而交错的磁化强度并没有与保守的电荷相对,但我们发现以交错磁化波动的自相似行为为特征的长期以来的pr虫状态。利用初始条件引入的长度尺度的分离,我们得出了一个简化的分析模型,该模型使我们能够分析交错的磁化波动的空间时间缩放指数和幂律分布,并使用相位空间方法找到与数值模拟的极好的一致性。缩放指数对初始条件的细节不敏感,尤其是不需要能量的微调来触发自相似的缩放制度。与Heisenberg Ferromagnet上远面平衡普遍性的最新结果相比,我们发现定量不同的时空缩放指数,因此表明具有铁磁和抗铁磁学初始条件的同一模型可以容纳不同的通用状态。我们的预测与海森堡磁铁和驱动的抗铁磁绝缘子的超冷原子模拟器有关。

We study the far-from-equilibrium dynamics of isolated two-dimensional Heisenberg antiferromagnets. We consider spin spiral initial conditions which imprint a position-dependent staggered-magnetization (or Neel order) in the two-dimensional lattice. Remarkably, we find a long-lived prethermal regime characterized by self-similar behavior of staggered magnetization fluctuations, although the system has no long-range order at finite energy and the staggered magnetization does not couple with conserved charges. Exploiting the separation of length scales introduced by the initial condition, we derive a simplified analytical model that allow us to compute the spatial-temporal scaling exponents and power-law distribution of the staggered magnetization fluctuations analytically, and find excellent agreement with numerical simulations using phase space methods. The scaling exponents are insensitive to details of the initial condition, in particular, no fine-tuning of energy is required to trigger the self-similar scaling regime. Compared with recent results on far-from-equilibrium universality on the Heisenberg ferromagnet, we find quantitatively distinct spatial-temporal scaling exponents, therefore suggesting that the same model with ferromagnetic and antiferromagnetic initial conditions can host different universal regimes. Our predictions are relevant to ultra-cold atoms simulators of Heisenberg magnets and driven antiferromagnetic insulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源