论文标题

基于用户特定双散装的协作过滤:处理偏好区域,稀疏性和主观性

User-Specific Bicluster-based Collaborative Filtering: Handling Preference Locality, Sparsity and Subjectivity

论文作者

Silva, Miguel G., Henriques, Rui, Madeira, Sara C.

论文摘要

协作过滤(CF)是建立推荐系统的最常见方法,在我们作为产品和服务消费者的日常生活中普遍存在。但是,挑战在处理建议数据时限制了协作过滤方法的有效性,这主要是由于用户偏好的多样性和本地性,用户项目评级的结构稀疏性,评级量表的主观性以及越来越高的项目维度和用户群。为了回答其中一些挑战,一些作者提出了将CF与双簇技术结合的成功方法。 这项工作评估了CF的双簇方法的有效性,比较了算法选择的影响,并确定了基于双簇的优势CF的原理。结果,我们提出了USBFC,这是一种基于双簇的CF方法,该方法从强烈的连贯和统计学上具有重要意义的评级模式中创建了特定于用户的模型,与用户共享偏好的子空间相对应。对现实世界数据的评估表明,USBCF针对最先进的CF方法实现了竞争性的预测准确性。此外,USBFC通过增加覆盖范围来成功抑制先前提出的基于双簇的CF的主要缺点,并通过增强基于共簇的CF来增强子空间同质性。

Collaborative Filtering (CF), the most common approach to build Recommender Systems, became pervasive in our daily lives as consumers of products and services. However, challenges limit the effectiveness of Collaborative Filtering approaches when dealing with recommendation data, mainly due to the diversity and locality of user preferences, structural sparsity of user-item ratings, subjectivity of rating scales, and increasingly high item dimensionality and user bases. To answer some of these challenges, some authors proposed successful approaches combining CF with Biclustering techniques. This work assesses the effectiveness of Biclustering approaches for CF, comparing the impact of algorithmic choices, and identifies principles for superior Biclustering-based CF. As a result, we propose USBFC, a Biclustering-based CF approach that creates user-specific models from strongly coherent and statistically significant rating patterns, corresponding to subspaces of shared preferences across users. Evaluation on real-world data reveals that USBCF achieves competitive predictive accuracy against state-of-the-art CF methods. Moreover, USBFC successfully suppresses the main shortcomings of the previously proposed state-of-the-art biclustering-based CF by increasing coverage, and coclustering-based CF by strengthening subspace homogeneity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源