论文标题

用于统一单图像的跨案件多任务双递归网络

Cross-Stitched Multi-task Dual Recursive Networks for Unified Single Image Deraining and Desnowing

论文作者

Karavarsamis, Sotiris, Doumanoglou, Alexandros, Konstantoudakis, Konstantinos, Zarpalas, Dimitrios

论文摘要

我们介绍了针对统一的DERANEN和DESEND在多任务学习设置中的任务的交叉缝制多任务统一双递归网络(CMUDRN)模型。该统一模型从Cai等人开发的基本双递归网络(DRN)架构中借用。所提出的模型利用了跨缝单元,该单元能够跨两个单独的DRN模型进行多任务学习,每个模型分别负责单个图像驱动和否定。通过将交叉缝线单元固定在几层基本的特定任务DRN网络上,我们对两个单独的DRN模型进行了多任务学习。为了实现盲图恢复,在这些结构之上,我们采用了一个简单的神经融合方案,该方案将每个DRN的输出融合在一起。独立的特定任务DRN模型和融合方案是通过执行本地和全球监督的同时培训的。在两个DRN子模型上应用了局部监督,并将全局监督应用于所提出模型的数据融合群。因此,我们既可以启用特定于任务的DRN模型共享功能共享,并控制DRN子模型的图像恢复行为。一项消融研究显示了假设的CMUDRN模型的强度,并且实验表明其性能是可比或更好的单个图像模型,而在单个图像中却是驱逐和否定的任务。此外,CMUDRN通过通过幼稚的参数融合方案统一特定于任务的图像恢复管道来实现两个基础图像恢复任务的盲图修复。 CMUDRN实现可在https://github.com/vcl3d/cmudrn上获得。

We present the Cross-stitched Multi-task Unified Dual Recursive Network (CMUDRN) model targeting the task of unified deraining and desnowing in a multi-task learning setting. This unified model borrows from the basic Dual Recursive Network (DRN) architecture developed by Cai et al. The proposed model makes use of cross-stitch units that enable multi-task learning across two separate DRN models, each tasked for single image deraining and desnowing, respectively. By fixing cross-stitch units at several layers of basic task-specific DRN networks, we perform multi-task learning over the two separate DRN models. To enable blind image restoration, on top of these structures we employ a simple neural fusion scheme which merges the output of each DRN. The separate task-specific DRN models and the fusion scheme are simultaneously trained by enforcing local and global supervision. Local supervision is applied on the two DRN submodules, and global supervision is applied on the data fusion submodule of the proposed model. Consequently, we both enable feature sharing across task-specific DRN models and control the image restoration behavior of the DRN submodules. An ablation study shows the strength of the hypothesized CMUDRN model, and experiments indicate that its performance is comparable or better than baseline DRN models on the single image deraining and desnowing tasks. Moreover, CMUDRN enables blind image restoration for the two underlying image restoration tasks, by unifying task-specific image restoration pipelines via a naive parametric fusion scheme. The CMUDRN implementation is available at https://github.com/VCL3D/CMUDRN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源