论文标题
通过电力系统中的多通道GNNS使用的事件检测的类型信息
Type Information Utilized Event Detection via Multi-Channel GNNs in Electrical Power Systems
论文作者
论文摘要
电力系统中的事件检测旨在识别触发因素和事件类型,这有助于相关人员迅速响应紧急情况,并促进电源策略的优化。但是,简短的电气记录文本的长度有限会导致严重的信息稀疏性,而电力系统的众多域特异性术语使得很难从预先培训的通用域文本中的语言模型中转移知识。传统事件检测方法主要集中在通用域,而忽略了电源系统域中的这两个问题。为了解决上述问题,我们提出了一个多渠道图神经网络,利用类型信息在电力系统中进行事件检测,名为MC-TED,利用语义渠道和拓扑渠道来丰富短文中的信息交互。具体而言,语义频道以语义相似性来完善文本表示,从而在潜在事件相关的单词之间构建语义信息相互作用。拓扑渠道会生成关系类型的图形建模单词依赖性,以及一个单词型意识的图形集成了词性的一部分标签。为了进一步减少类型分析中专业术语加重的错误,类型学习机制的设计旨在更新拓扑渠道中单词类型和关系类型的表示。通过这种方式,可以通过在拓扑和语义信息之间互动来缓解信息的稀疏和专业术语问题问题。此外,为了解决电力系统中缺乏标记的数据,我们基于电力事件文本(名为POE)构建了一个中国事件检测数据集。在实验中,我们的模型不仅可以在POE数据集上,而且在包括ACE 2005和MAVEN在内的通用域事件检测数据集上实现了引人注目的结果。
Event detection in power systems aims to identify triggers and event types, which helps relevant personnel respond to emergencies promptly and facilitates the optimization of power supply strategies. However, the limited length of short electrical record texts causes severe information sparsity, and numerous domain-specific terminologies of power systems makes it difficult to transfer knowledge from language models pre-trained on general-domain texts. Traditional event detection approaches primarily focus on the general domain and ignore these two problems in the power system domain. To address the above issues, we propose a Multi-Channel graph neural network utilizing Type information for Event Detection in power systems, named MC-TED, leveraging a semantic channel and a topological channel to enrich information interaction from short texts. Concretely, the semantic channel refines textual representations with semantic similarity, building the semantic information interaction among potential event-related words. The topological channel generates a relation-type-aware graph modeling word dependencies, and a word-type-aware graph integrating part-of-speech tags. To further reduce errors worsened by professional terminologies in type analysis, a type learning mechanism is designed for updating the representations of both the word type and relation type in the topological channel. In this way, the information sparsity and professional term occurrence problems can be alleviated by enabling interaction between topological and semantic information. Furthermore, to address the lack of labeled data in power systems, we built a Chinese event detection dataset based on electrical Power Event texts, named PoE. In experiments, our model achieves compelling results not only on the PoE dataset, but on general-domain event detection datasets including ACE 2005 and MAVEN.