论文标题

用于大型模拟的机器学习建筑街区墙模型

Machine learning building-block-flow wall model for large-eddy simulation

论文作者

Lozano-Durán, Adrián, Bae, H. Jane

论文摘要

通过将流程作为构建块的组合设计为大型涡流模拟(LES)的壁模型。该模型的核心假设是,一组有限的简单规范流包含必不可少的物理学,以预测更复杂的场景中的壁切应力。该模型的构建是为了预测零/有利/不利的平均压力梯度壁湍流,分离,统计上不稳定的湍流,平均流量三维性和层流流量。该方法是使用两种类型的人工神经网络实现的:一个分类器,该分类器可以识别流量中每个构件的贡献,以及一个预测变量,该预测因子通过建筑块流的组合来估算壁剪应力。训练数据直接从优化的壁模型LE(WMLE)中获得,以重现正确的平均值。这种方法保证了培训数据的一致性与流量求解器的数值离散和网格策略。模型的输出伴随着置信度评分,这有助于检测模型表现不佳的区域。该模型在规范流(例如层流/湍流边界层,湍流通道,湍流Poiseuille-couette流,湍流管道)和两种逼真的飞机配置中进行了验证:NASA通用研究模型高级升级和NASA联合缩短流动实验。结果表明,建筑街区壁模型优于平衡壁模型(或匹配)预测。还可以得出结论,WMLES的进一步改进应结合到亚网格规模的建模中,以最大程度地减少误差传播到壁模型。

A wall model for large-eddy simulation (LES) is proposed by devising the flow as a combination of building blocks. The core assumption of the model is that a finite set of simple canonical flows contains the essential physics to predict the wall-shear stress in more complex scenarios. The model is constructed to predict zero/favourable/adverse mean pressure gradient wall turbulence, separation, statistically unsteady turbulence with mean flow three-dimensionality, and laminar flow. The approach is implemented using two types of artificial neural networks: a classifier, which identifies the contribution of each building block in the flow, and a predictor, which estimates the wall-shear stress via combination of the building-block flows. The training data are directly obtained from wall-modelled LES (WMLES) optimised to reproduce the correct mean quantities. This approach guarantees the consistency of the training data with the numerical discretisation and the gridding strategy of the flow solver. The output of the model is accompanied by a confidence score in the prediction that aids the detection of regions where the model underperforms. The model is validated in canonical flows (e.g. laminar/turbulent boundary layers, turbulent channels, turbulent Poiseuille-Couette flow, turbulent pipe) and two realistic aircraft configurations: the NASA Common Research Model High-lift and NASA Juncture Flow experiment. It is shown that the building-block-flow wall model outperforms (or matches) the predictions by an equilibrium wall model. It is also concluded that further improvements in WMLES should incorporate advances in subgrid-scale modelling to minimise error propagation to the wall model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源