论文标题
具有部分正阳性标签的多标签图像识别的类别自适应标签发现和噪声排斥
Category-Adaptive Label Discovery and Noise Rejection for Multi-label Image Recognition with Partial Positive Labels
论文作者
论文摘要
作为降低注释成本的有前途的解决方案,具有部分正标(MLR-PPL)的训练多标签模型,其中仅知道阳性标签很少,而其他标签则缺失,而引起了人们的关注。由于没有任何负标签,先前的工作将未知标签视为负面标签,并采用了传统的MLR算法。为了拒绝嘈杂的标签,最近的作品将大损失样本视为噪声,但忽略了语义相关性不同的多标签图像。在这项工作中,我们建议探索不同图像之间的语义相关性,以促进MLR-PPL任务。具体而言,我们设计了一个统一的框架,自适应标签的发现和噪声拒绝,它以自适应方式发现了未知标签并拒绝每个类别的嘈杂标签。该框架由两个互补模块组成:(1)类别自适应标签发现模块首先测量正样本之间的语义相似性,然后补充具有高相似性的未知标签; (2)类别自适应噪声排斥模块首先根据不同样本的语义相似性计算样本权重,然后丢弃具有低权重的嘈杂标签。此外,我们提出了一种新颖的自适应阈值更新,以适应性地调整阈值,以避免耗时的手动调整过程。广泛的实验表明,我们提出的方法始终优于当前领先算法。
As a promising solution of reducing annotation cost, training multi-label models with partial positive labels (MLR-PPL), in which merely few positive labels are known while other are missing, attracts increasing attention. Due to the absence of any negative labels, previous works regard unknown labels as negative and adopt traditional MLR algorithms. To reject noisy labels, recent works regard large loss samples as noise but ignore the semantic correlation different multi-label images. In this work, we propose to explore semantic correlation among different images to facilitate the MLR-PPL task. Specifically, we design a unified framework, Category-Adaptive Label Discovery and Noise Rejection, that discovers unknown labels and rejects noisy labels for each category in an adaptive manner. The framework consists of two complementary modules: (1) Category-Adaptive Label Discovery module first measures the semantic similarity between positive samples and then complement unknown labels with high similarities; (2) Category-Adaptive Noise Rejection module first computes the sample weights based on semantic similarities from different samples and then discards noisy labels with low weights. Besides, we propose a novel category-adaptive threshold updating that adaptively adjusts the threshold, to avoid the time-consuming manual tuning process. Extensive experiments demonstrate that our proposed method consistently outperforms current leading algorithms.