论文标题
探索AD $ {} _ 3 $/cft $ {} _ 2 $的量子光谱曲线
Exploring the Quantum Spectral Curve for AdS${}_3$/CFT${}_2$
论文作者
论文摘要
尽管在$ ads_3 \ times s^3 \ times t^4 $背景上具有丰富而富有成果的历史,但由于包装效应的严重程度,除了严格的大量量子数字外,不可能从集成性中提取许多具体预测,但不可能从集成性中提取许多具体预测。在纯Ramond-Ramond Flux的背景下,该系统的两个独立且相同的建议对量子光谱曲线(QSC)进行了根本性变化。预计该公式将准确捕获所有包装效果,并描述完整的平面光谱。无数模式猜想在QSC的新特性中表现出来:QSC Q-功能的分支切割奇点的非二次性质。与n = 4 sym的良好情况相比,此功能意味着解决QSC方程的新技术挑战。在本文中,我们解决了这些困难,并获得了有史以来对通用不受保护的字符串激发的第一个预测。我们解释了如何在n = 4 sym中弱't Hooft耦合极限的类似物的类似物中提取系统扩展,并获得高精度的数值结果。这些具体数据以及其他可从QSC获得的数据可能有助于确定SO-FAR神秘的双重CFT。
Despite the rich and fruitful history of the integrability approach to string theory on the $AdS_3\times S^3\times T^4$ background, it has not been possible to extract many concrete predictions from integrability, except in a strict asymptotic regime of large quantum numbers, due to the severity of wrapping effects. The situation changed radically with two independent and identical proposals for the Quantum Spectral Curve (QSC) for this system in a background of pure Ramond-Ramond flux. This formulation is expected to capture all wrapping effects exactly and describe the full planar spectrum. Massless modes conjecturally manifest themselves in a new property of this QSC: the non-quadratic nature of the branch-cut singularities of the QSC Q-functions. This feature implies new technical challenges in solving the QSC equations as compared to the well-studied case of N=4 SYM. In this paper we resolve these difficulties and obtain the first ever predictions for generic unprotected string excitations. We explain how to extract a systematic expansion around the analogue of the weak 't Hooft coupling limit in N=4 SYM and also obtain high-precision numerical results. This concrete data and others obtainable from the QSC could help to identify the so-far mysterious dual CFT.