论文标题
峰值神经元泄漏和网络复发对基于事件的时空模式识别的影响
Impact of spiking neurons leakages and network recurrences on event-based spatio-temporal pattern recognition
论文作者
论文摘要
尖峰神经网络,加上神经形态硬件和基于事件的传感器对低延迟和边缘低功率推断的兴趣增加。但是,在文献中提出了多种尖峰神经元模型,具有不同水平的生物学合理性以及不同的计算特征和复杂性。因此,有必要从生物学中定义正确的抽象水平,以便在神经形态硬件中获得准确,高效和快速推断的最佳性能。在这种情况下,我们探讨了突触和膜泄漏在尖峰神经元中的影响。我们使用前馈拓扑和基于事件的视觉和听觉模式识别的三个具有不同计算复杂性的神经模型面对不同的计算复杂性。我们的结果表明,就准确性而言,当数据中既有时间信息又有明确的复发时,泄漏很重要。此外,泄漏不一定会增加网络中流动的尖峰的稀疏性。我们还研究了异质性在泄漏的时间常数中的影响,结果在使用具有丰富时间结构的数据时,准确性有所提高。这些结果提高了我们对神经泄漏和网络复发的计算作用的理解,并为嵌入式系统的紧凑和节能神经形态硬件设计提供了宝贵的见解。
Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge. However, multiple spiking neuron models have been proposed in the literature with different levels of biological plausibility and different computational features and complexities. Consequently, there is a need to define the right level of abstraction from biology in order to get the best performance in accurate, efficient and fast inference in neuromorphic hardware. In this context, we explore the impact of synaptic and membrane leakages in spiking neurons. We confront three neural models with different computational complexities using feedforward and recurrent topologies for event-based visual and auditory pattern recognition. Our results show that, in terms of accuracy, leakages are important when there are both temporal information in the data and explicit recurrence in the network. In addition, leakages do not necessarily increase the sparsity of spikes flowing in the network. We also investigate the impact of heterogeneity in the time constant of leakages, and the results show a slight improvement in accuracy when using data with a rich temporal structure. These results advance our understanding of the computational role of the neural leakages and network recurrences, and provide valuable insights for the design of compact and energy-efficient neuromorphic hardware for embedded systems.