论文标题

贝叶斯距离梯子:$ h_0 $从光学到近红外的IA型超新星的一致建模

A BayeSN Distance Ladder: $H_0$ from a consistent modelling of Type Ia supernovae from the optical to the near infrared

论文作者

Dhawan, Suhail, Thorp, Stephen, Mandel, Kaisey S., Ward, Sam M., Narayan, Gautham, Jha, Saurabh W., Chant, Thaisen

论文摘要

鉴于最近与早期宇宙推断的紧张关系,哈勃常数($ h_0 $)的局部距离梯子估计在宇宙学上很重要。我们从IA型超新星(SN〜IA)距离梯子估算$ H_0 $,通过分层贝叶斯SED模型,贝恩斯(Bayesn)推断sn〜ia距离。该方法具有显着的优势,即能够同时对光学和近红外(NIR)sn〜ia光曲线进行建模。我们使用两个独立的距离指示器,即齿轮或红色巨型分支(TRGB)的尖端,以使用光学和NIR数据校准67 SNE〜IA的Hubble-Flow样品。我们估计$ h_0 = 74.82 \ pm 0.97 $(stat)$ \ pm \,0.84 $(sys)km \,s $^{ - 1} $ \,mpc $^{ - 1} $在使用校准量使用37个41 sne state的37个41 sne and $ 70. $ 70.90.92 ppepheaxies的校准时$ \ pm \,1.49 $(sys)km \,s $^{ - 1} $ \,mpc $^{ - 1} $当使用带有TRGB距离至15个主机星系的校准量为18 sne〜ia时。对于这两种方法,我们都会发现一个低的固有散点$σ_ {\ rm int} \ Lessim 0.1 $ mag。我们测试各种选择标准,并且在$ H_0 $的估计中没有发现重大变化。与同等的仅光学案例相比,光学和NIR的同时建模最高$ \ sim $ 15 \%降低$ H_0 $不确定性。随着距离梯子的其他梯级预期的改进,利用关节光学NIR SN〜IA数据对于减少$ H_0 $错误预算至关重要。

The local distance ladder estimate of the Hubble constant ($H_0$) is important in cosmology, given the recent tension with the early universe inference. We estimate $H_0$ from the Type Ia supernova (SN~Ia) distance ladder, inferring SN~Ia distances with the hierarchical Bayesian SED model, BayeSN. This method has a notable advantage of being able to continuously model the optical and near-infrared (NIR) SN~Ia light curves simultaneously. We use two independent distance indicators, Cepheids or the tip of the red giant branch (TRGB), to calibrate a Hubble-flow sample of 67 SNe~Ia with optical and NIR data. We estimate $H_0 = 74.82 \pm 0.97$ (stat) $\pm\, 0.84$ (sys) km\,s$^{-1}$\,Mpc$^{-1}$ when using the calibration with Cepheid distances to 37 host galaxies of 41 SNe~Ia, and $70.92 \pm 1.14$ (stat) $\pm\,1.49$ (sys) km\,s$^{-1}$\,Mpc$^{-1}$ when using the calibration with TRGB distances to 15 host galaxies of 18 SNe~Ia. For both methods, we find a low intrinsic scatter $σ_{\rm int} \lesssim 0.1$ mag. We test various selection criteria and do not find significant shifts in the estimate of $H_0$. Simultaneous modelling of the optical and NIR yields up to $\sim$15\% reduction in $H_0$ uncertainty compared to the equivalent optical-only cases. With improvements expected in other rungs of the distance ladder, leveraging joint optical-NIR SN~Ia data can be critical to reducing the $H_0$ error budget.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源