论文标题
贝叶斯距离梯子:$ h_0 $从光学到近红外的IA型超新星的一致建模
A BayeSN Distance Ladder: $H_0$ from a consistent modelling of Type Ia supernovae from the optical to the near infrared
论文作者
论文摘要
鉴于最近与早期宇宙推断的紧张关系,哈勃常数($ h_0 $)的局部距离梯子估计在宇宙学上很重要。我们从IA型超新星(SN〜IA)距离梯子估算$ H_0 $,通过分层贝叶斯SED模型,贝恩斯(Bayesn)推断sn〜ia距离。该方法具有显着的优势,即能够同时对光学和近红外(NIR)sn〜ia光曲线进行建模。我们使用两个独立的距离指示器,即齿轮或红色巨型分支(TRGB)的尖端,以使用光学和NIR数据校准67 SNE〜IA的Hubble-Flow样品。我们估计$ h_0 = 74.82 \ pm 0.97 $(stat)$ \ pm \,0.84 $(sys)km \,s $^{ - 1} $ \,mpc $^{ - 1} $在使用校准量使用37个41 sne state的37个41 sne and $ 70. $ 70.90.92 ppepheaxies的校准时$ \ pm \,1.49 $(sys)km \,s $^{ - 1} $ \,mpc $^{ - 1} $当使用带有TRGB距离至15个主机星系的校准量为18 sne〜ia时。对于这两种方法,我们都会发现一个低的固有散点$σ_ {\ rm int} \ Lessim 0.1 $ mag。我们测试各种选择标准,并且在$ H_0 $的估计中没有发现重大变化。与同等的仅光学案例相比,光学和NIR的同时建模最高$ \ sim $ 15 \%降低$ H_0 $不确定性。随着距离梯子的其他梯级预期的改进,利用关节光学NIR SN〜IA数据对于减少$ H_0 $错误预算至关重要。
The local distance ladder estimate of the Hubble constant ($H_0$) is important in cosmology, given the recent tension with the early universe inference. We estimate $H_0$ from the Type Ia supernova (SN~Ia) distance ladder, inferring SN~Ia distances with the hierarchical Bayesian SED model, BayeSN. This method has a notable advantage of being able to continuously model the optical and near-infrared (NIR) SN~Ia light curves simultaneously. We use two independent distance indicators, Cepheids or the tip of the red giant branch (TRGB), to calibrate a Hubble-flow sample of 67 SNe~Ia with optical and NIR data. We estimate $H_0 = 74.82 \pm 0.97$ (stat) $\pm\, 0.84$ (sys) km\,s$^{-1}$\,Mpc$^{-1}$ when using the calibration with Cepheid distances to 37 host galaxies of 41 SNe~Ia, and $70.92 \pm 1.14$ (stat) $\pm\,1.49$ (sys) km\,s$^{-1}$\,Mpc$^{-1}$ when using the calibration with TRGB distances to 15 host galaxies of 18 SNe~Ia. For both methods, we find a low intrinsic scatter $σ_{\rm int} \lesssim 0.1$ mag. We test various selection criteria and do not find significant shifts in the estimate of $H_0$. Simultaneous modelling of the optical and NIR yields up to $\sim$15\% reduction in $H_0$ uncertainty compared to the equivalent optical-only cases. With improvements expected in other rungs of the distance ladder, leveraging joint optical-NIR SN~Ia data can be critical to reducing the $H_0$ error budget.